Suppr超能文献

电机驱动传输的扩散动力学:表面的梯度产生与自组织

Diffusion dynamics of motor-driven transport: gradient production and self-organization of surfaces.

作者信息

Vikhorev Petr G, Vikhoreva Natalia N, Sundberg Mark, Balaz Martina, Albet-Torres Nuria, Bunk Richard, Kvennefors Anders, Liljesson Kenneth, Nicholls Ian A, Nilsson Leif, Omling Pär, Tågerud Sven, Montelius Lars, Månsson Alf

机构信息

School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.

出版信息

Langmuir. 2008 Dec 2;24(23):13509-17. doi: 10.1021/la8016112.

Abstract

The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient (D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.

摘要

细胞骨架丝(如肌动蛋白丝)与分子马达(如肌球蛋白)之间的相互作用是细胞运动和细胞内部组织诸多方面的基础。在体外运动分析(IVMA)中,当细胞骨架丝由吸附在人工表面的分子马达推动时会被观察到(如在马达功能研究中)。在这里,我们将细胞骨架丝可作为纳米图案化中的纳米级模板这一观点与一种用于产生生物分子表面梯度和纳米级地形特征的新方法相结合。这种梯度的产生具有挑战性,但却越来越受到关注(如在细胞生物学中)。首先,我们表明在IVMA中肌球蛋白诱导的肌动蛋白丝滑动可以近似地描述为持续随机运动,其扩散系数(D)由类似于爱因斯坦方程(D = kT/γ)的关系给出。在这种关系中,热能(kT)和阻力系数(γ)分别被与肌动球蛋白自由能转导相关以及肌动球蛋白解离速率常数相关的参数所取代。然后我们展示了如何在概念上新的方法中利用肌动蛋白丝的持续随机运动来产生可预测形状的肌动蛋白丝密度梯度。由于存在规则间隔的结合位点(如赖氨酸和半胱氨酸),肌动蛋白丝可作为其他生物分子(以纤连蛋白进行测试)或纳米颗粒的合适纳米级支架。这为二级化学和地形梯度奠定了基础,对细胞生物学研究和生物传感具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验