Suppr超能文献

TOP-IDP量表:一种测量内在无序倾向的新型氨基酸量表。

TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder.

作者信息

Campen Andrew, Williams Ryan M, Brown Celeste J, Meng Jingwei, Uversky Vladimir N, Dunker A Keith

机构信息

Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, IN 46202, USA.

出版信息

Protein Pept Lett. 2008;15(9):956-63. doi: 10.2174/092986608785849164.

Abstract

Intrinsically disordered proteins carry out various biological functions while lacking ordered secondary and/or tertiary structure. In order to find general intrinsic properties of amino acid residues that are responsible for the absence of ordered structure in intrinsically disordered proteins we surveyed 517 amino acid scales. Each of these scales was taken as an independent attribute for the subsequent analysis. For a given attribute value X, which is averaged over a consecutive string of amino acids, and for a given data set having both ordered and disordered segments, the conditional probabilities P(s(o) | x) and P(s(d) | x) for order and disorder, respectively, can be determined for all possible values of X. Plots of the conditional probabilities P(s(o) | x) and P(s(o) | x) versus X give a pair of curves. The area between these two curves divided by the total area of the graph gives the area ratio value (ARV), which is proportional to the degree of separation of the two probability curves and, therefore, provides a measure of the given attribute's power to discriminate between order and disorder. As ARV falls between zero and one, larger ARV corresponds to the better discrimination between order and disorder. Starting from the scale with the highest ARV, we applied a simulated annealing procedure to search for alternative scale values and have managed to increase the ARV by more than 10%. The ranking of the amino acids in this new TOP-IDP scale is as follows (from order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. A web-based server has been created to apply the TOP-IDP scale to predict intrinsically disordered proteins (http://www.disprot.org/dev/disindex.php).

摘要

内在无序蛋白质在缺乏有序二级和/或三级结构的情况下执行各种生物学功能。为了找到导致内在无序蛋白质缺乏有序结构的氨基酸残基的一般内在特性,我们调查了517种氨基酸标度。这些标度中的每一个都被用作后续分析的独立属性。对于在连续一串氨基酸上平均得到的给定属性值X,以及对于具有有序和无序片段的给定数据集,可以针对X的所有可能值分别确定有序和无序的条件概率P(s(o) | x)和P(s(d) | x)。条件概率P(s(o) | x)和P(s(o) | x)与X的关系图给出一对曲线。这两条曲线之间的面积除以图形的总面积得到面积比值(ARV),它与两条概率曲线的分离程度成正比,因此提供了给定属性区分有序和无序的能力的一种度量。由于ARV介于0和1之间,ARV越大,有序和无序之间的区分就越好。从具有最高ARV的标度开始,我们应用模拟退火程序来搜索替代标度值,并成功将ARV提高了10%以上。这个新的TOP-IDP标度中氨基酸的排名如下(从促进有序到促进无序):W、F、Y、I、M、L、V、N、C、T、A、G、R、D、H、Q、K、S、E、P。已经创建了一个基于网络的服务器来应用TOP-IDP标度预测内在无序蛋白质(网址:http://www.disprot.org/dev/disindex.php)。

相似文献

1
TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder.
Protein Pept Lett. 2008;15(9):956-63. doi: 10.2174/092986608785849164.
2
The protein non-folding problem: amino acid determinants of intrinsic order and disorder.
Pac Symp Biocomput. 2001:89-100. doi: 10.1142/9789814447362_0010.
3
IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy.
J Biomol Struct Dyn. 2025 Feb;43(2):957-965. doi: 10.1080/07391102.2023.2290615. Epub 2023 Dec 11.
4
Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
J Comput Aided Mol Des. 2017 May;31(5):453-466. doi: 10.1007/s10822-017-0020-y. Epub 2017 Apr 1.
5
Improving protein order-disorder classification using charge-hydropathy plots.
BMC Bioinformatics. 2014;15 Suppl 17(Suppl 17):S4. doi: 10.1186/1471-2105-15-S17-S4. Epub 2014 Dec 16.
6
DisProt: the Database of Disordered Proteins.
Nucleic Acids Res. 2007 Jan;35(Database issue):D786-93. doi: 10.1093/nar/gkl893. Epub 2006 Dec 1.
7
Intrinsic disorder in the Protein Data Bank.
J Biomol Struct Dyn. 2007 Feb;24(4):325-42. doi: 10.1080/07391102.2007.10507123.
8
Predicting intrinsic disorder from amino acid sequence.
Proteins. 2003;53 Suppl 6:566-72. doi: 10.1002/prot.10532.
9
The unfoldomics decade: an update on intrinsically disordered proteins.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2164-9-S2-S1.
10
PONDR-FIT: a meta-predictor of intrinsically disordered amino acids.
Biochim Biophys Acta. 2010 Apr;1804(4):996-1010. doi: 10.1016/j.bbapap.2010.01.011. Epub 2010 Jan 25.

引用本文的文献

2
IDRdecoder: a machine learning approach for rational drug discovery toward intrinsically disordered regions.
Front Bioinform. 2025 Jul 18;5:1627836. doi: 10.3389/fbinf.2025.1627836. eCollection 2025.
3
Functions of Intrinsically Disordered Regions.
Biology (Basel). 2025 Jul 4;14(7):810. doi: 10.3390/biology14070810.
4
The role of intrinsically disordered regions of SARS-CoV-2 nucleocapsid and non-structural protein 1 proteins.
Front Chem. 2025 Jun 11;13:1597656. doi: 10.3389/fchem.2025.1597656. eCollection 2025.
8
SHARK-capture identifies functional motifs in intrinsically disordered protein regions.
Protein Sci. 2025 Apr;34(4):e70091. doi: 10.1002/pro.70091.
10
Genome-Wide Characterization of Wholly Disordered Proteins in .
Int J Mol Sci. 2025 Jan 28;26(3):1117. doi: 10.3390/ijms26031117.

本文引用的文献

1
Mining alpha-helix-forming molecular recognition features with cross species sequence alignments.
Biochemistry. 2007 Nov 27;46(47):13468-77. doi: 10.1021/bi7012273. Epub 2007 Nov 1.
2
Composition Profiler: a tool for discovery and visualization of amino acid composition differences.
BMC Bioinformatics. 2007 Jun 19;8:211. doi: 10.1186/1471-2105-8-211.
6
Intrinsic disorder and functional proteomics.
Biophys J. 2007 Mar 1;92(5):1439-56. doi: 10.1529/biophysj.106.094045. Epub 2006 Dec 8.
7
DisProt: the Database of Disordered Proteins.
Nucleic Acids Res. 2007 Jan;35(Database issue):D786-93. doi: 10.1093/nar/gkl893. Epub 2006 Dec 1.
8
Flexible nets. The roles of intrinsic disorder in protein interaction networks.
FEBS J. 2005 Oct;272(20):5129-48. doi: 10.1111/j.1742-4658.2005.04948.x.
9
Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling.
J Mol Recognit. 2005 Sep-Oct;18(5):343-84. doi: 10.1002/jmr.747.
10
FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded.
Bioinformatics. 2005 Aug 15;21(16):3435-8. doi: 10.1093/bioinformatics/bti537. Epub 2005 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验