Miller Martin R, Pedersen Ole F, Lange Peter, Vestbo Jørgen
Department of Medicine, University Hospital Birmingham NHS Trust, Selly Oak Hospital, UK.
Respir Med. 2009 Mar;103(3):442-8. doi: 10.1016/j.rmed.2008.09.016. Epub 2008 Nov 6.
Studies relating lung function to survival commonly express lung function impairment as a percent of predicted but this retains age, height and sex bias. We have studied alternative methods of expressing forced expiratory volume in 1s (FEV(1)) for predicting all cause and airway related lung disease mortality in the Copenhagen City Heart Study data. Cox regression models were derived for survival over 25 years in 13,900 subjects. Age on entry, sex, smoking status, body mass index, previous myocardial infarction and diabetes were putative predictors together with FEV(1) either as raw data, standardised by powers of height (FEV(1)/ht(n)), as percent of predicted (FEV(1)PP) or as standardised residuals (FEV(1)SR). Quintiles of FEV(1)/ht(2) were better at predicting all cause mortality in multivariate models than FEV(1)PP and FEV(1)SR, with the hazard ratio (HR) for the worst quintiles being 2.8, 2.0 and 2.1 respectively. Cut levels of lung function were used to categorise impairment and the HR for multivariate prediction of all cause and airway related lung disease mortality were 10 and 2044 respectively for the worst category of FEV(1)/ht(2) compared to 5 and 194 respectively for the worst category of FEV(1)PP. In univariate predictions of all cause mortality the HR for FEV(1)/ht(2) categories was 2-4 times higher than those for FEV(1)PP and 3-10 times higher for airway related lung disease mortality. We conclude that FEV(1)/ht(2) is superior to FEV(1)PP for predicting survival in a general population and this method of expressing FEV(1) impairment best reflects hazard for subsequent death.
将肺功能与生存率相关联的研究通常将肺功能损害表示为预测值的百分比,但这仍存在年龄、身高和性别偏差。我们在哥本哈根市心脏研究数据中研究了用其他方法来表示一秒用力呼气量(FEV₁),以预测全因死亡率和气道相关肺部疾病死亡率。为13900名受试者建立了25年生存率的Cox回归模型。纳入时的年龄、性别、吸烟状况、体重指数、既往心肌梗死和糖尿病是可能的预测因素,同时FEV₁作为原始数据、按身高幂标准化(FEV₁/htⁿ)、预测值百分比(FEV₁PP)或标准化残差(FEV₁SR)。在多变量模型中,FEV₁/ht²的五分位数在预测全因死亡率方面比FEV₁PP和FEV₁SR更好,最差五分位数的风险比(HR)分别为2.8、2.0和2.1。使用肺功能的切点水平对损害进行分类,与FEV₁PP最差类别相比,FEV₁/ht²最差类别在多变量预测全因死亡率和气道相关肺部疾病死亡率时的HR分别为10和2044,而FEV₁PP最差类别分别为5和194。在全因死亡率的单变量预测中,FEV₁/ht²类别的HR比FEV₁PP高2至4倍,在气道相关肺部疾病死亡率方面高3至10倍。我们得出结论,在预测普通人群的生存率方面,FEV₁/ht²优于FEV₁PP,这种表示FEV₁损害的方法最能反映后续死亡的风险。