文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疏水相互作用是KCa3.1通道关闭构型的关键决定因素。对在零钙条件下组成性激活的KCa3.1突变体的分析。

Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.

作者信息

Garneau Line, Klein Háléne, Banderali Umberto, Longprá-Lauzon Ariane, Parent Lucie, Sauvá Rámy

机构信息

Dápartement de Physiologie, Groupe d'Étude sur les Protáines Membranaires, Facultá de Mádecine, Universitá de Montráal, Montráal, Quábec H3C 3J7, Canada.

Dápartement de Physiologie, Groupe d'Étude sur les Protáines Membranaires, Facultá de Mádecine, Universitá de Montráal, Montráal, Quábec H3C 3J7, Canada.

出版信息

J Biol Chem. 2009 Jan 2;284(1):389-403. doi: 10.1074/jbc.M805700200. Epub 2008 Nov 7.


DOI:10.1074/jbc.M805700200
PMID:18996847
Abstract

In this study we present evidence that residue Val282 in the S6 transmembrane segment of the calcium-activated KCa3.1 channel constitutes a key determinant of channel gating. A Gly scan of the S6 transmembrane segment first revealed that the substitutions A279G and V282G cause the channel to become constitutively active in zero Ca2+. Constitutive activity was not observed when residues extending from Cys276 to Ala286, other than Ala279 and Val282, were substituted to Gly. The accessibility of Cys engineered at Val275 deep in the channel cavity was next investigated for the ion-conducting V275C/V282G mutant and closed V275C channel in zero Ca2+ using Ag+ as probe. These experiments demonstrated that internal Ag+ ions have free access to the channel cavity independently of the channel conducting state, arguing against an activation gate located at the S6 segment C-terminal end. Experiments were also conducted where Val282 was substituted by residues differing in size and/or hydrophobicity. We found a strong correlation between constitutive activity in zero Ca2+ and the hydrophobic energy for side chain burial. Single channel recordings showed finally that constitutive activation in zero Ca2+ is better explained by a model where the channel is locked in a low conducting state with a high open probability rather than resulting from a change in the open/closed energy balance that would favor channel openings to a full conducting state in the absence of Ca2+. We conclude that hydrophobic interactions involving Val282 constitute key determinants to KCa3.1 gating by modulating the ion conducting state of the selectivity filter through an effect on the S6 transmembrane segment.

摘要

在本研究中,我们提供证据表明,钙激活钾通道KCa3.1的S6跨膜段中的缬氨酸残基Val282是通道门控的关键决定因素。对S6跨膜段进行甘氨酸扫描首先发现,A279G和V282G取代会使通道在零钙条件下持续激活。当从Cys276延伸至Ala286的残基(除Ala279和Val282外)被替换为甘氨酸时,未观察到持续激活。接下来,使用银离子作为探针,研究了通道腔内深处Val275处工程化的半胱氨酸对于零钙条件下离子传导性的V275C/V282G突变体和关闭的V275C通道的可及性。这些实验表明,内部银离子可独立于通道传导状态自由进入通道腔,这与位于S6段C末端的激活门的观点相悖。还进行了将Val282替换为大小和/或疏水性不同的残基的实验。我们发现零钙条件下的持续激活与侧链埋藏的疏水能量之间存在很强的相关性。单通道记录最终表明,零钙条件下的持续激活用一个模型能更好地解释,即通道锁定在低传导状态且开放概率高,而不是由于开放/关闭能量平衡的变化导致在无钙条件下通道向完全传导状态开放。我们得出结论,涉及Val282的疏水相互作用通过影响S6跨膜段来调节选择性过滤器的离子传导状态,从而构成KCa3.1门控的关键决定因素。

相似文献

[1]
Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.

J Biol Chem. 2009-1-2

[2]
Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.

J Gen Physiol. 2007-4

[3]
Toward the rational design of constitutively active KCa3.1 mutant channels.

Methods Enzymol. 2010

[4]
Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process.

J Gen Physiol. 2014-2

[5]
Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process.

J Gen Physiol. 2013-7

[6]
Characterization of the PCMBS-dependent modification of KCa3.1 channel gating.

J Gen Physiol. 2010-9-13

[7]
Molecular mechanisms of Slo2 K channel closure.

J Physiol. 2017-4-1

[8]
Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1.

J Biol Chem. 2008-4-4

[9]
Structural Determinants for the Selectivity of the Positive KCa3.1 Gating Modulator 5-Methylnaphtho[2,1-]oxazol-2-amine (SKA-121).

Mol Pharmacol. 2017-10

[10]
Localization of the activation gate for small conductance Ca2+-activated K+ channels.

J Neurosci. 2002-8-1

引用本文的文献

[1]
Redox Regulation of K Channel: Role of Thioredoxin.

Antioxid Redox Signal. 2024-11

[2]
Investigating the Impact of Electrostatic Interactions on Calmodulin Binding and Ca-Dependent Activation of the Calcium-Gated Potassium SK4 Channel.

Int J Mol Sci. 2024-4-11

[3]
New KCNN4 Variants Associated With Anemia: Stomatocytosis Without Erythrocyte Dehydration.

Front Physiol. 2022-8-8

[4]
Role of SNARE Proteins in the Insertion of KCa3.1 in the Plasma Membrane of a Polarized Epithelium.

Front Physiol. 2022-6-27

[5]
Channelopathy of small- and intermediate-conductance Ca-activated K channels.

Acta Pharmacol Sin. 2023-2

[6]
LY294002 Inhibits Intermediate Conductance Calcium-Activated Potassium (KCa3.1) Current in Human Glioblastoma Cells.

Front Physiol. 2022-1-7

[7]
A V-to-F substitution in SK2 channels causes Ca hypersensitivity and improves locomotion in a C. elegans ALS model.

Sci Rep. 2018-7-16

[8]
Plasma membrane insertion of KCa2.3 (SK3) is dependent upon the SNARE proteins, syntaxin-4 and SNAP23.

PLoS One. 2018-5-16

[9]
Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures.

Science. 2018-5-4

[10]
Structure, Gating and Basic Functions of the Ca2+-activated K Channel of Intermediate Conductance.

Curr Neuropharmacol. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索