Suppr超能文献

16S rRNA 甲基转移酶 KsgA 的失活会导致大量具有高水平春雷霉素抗性的突变体出现。

Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance.

作者信息

Ochi Kozo, Kim Ji-Yun, Tanaka Yukinori, Wang Guojun, Masuda Kenta, Nanamiya Hideaki, Okamoto Susumu, Tokuyama Shinji, Adachi Yoshikazu, Kawamura Fujio

机构信息

National Food Research Institute, Tsukuba, Ibaraki, Japan.

出版信息

Antimicrob Agents Chemother. 2009 Jan;53(1):193-201. doi: 10.1128/AAC.00873-08. Epub 2008 Nov 10.

Abstract

The methyltransferases RsmG and KsgA methylate the nucleotides G535 (RsmG) and A1518 and A1519 (KsgA) in 16S rRNA, and inactivation of the proteins by introducing mutations results in acquisition of low-level resistance to streptomycin and kasugamycin, respectively. In a Bacillus subtilis strain harboring a single rrn operon (rrnO), we found that spontaneous ksgA mutations conferring a modest level of resistance to kasugamycin occur at a high frequency of 10(-6). More importantly, we also found that once cells acquire the ksgA mutations, they produce high-level kasugamycin resistance at an extraordinarily high frequency (100-fold greater frequency than that observed in the ksgA(+) strain), a phenomenon previously reported for rsmG mutants. This was not the case for other antibiotic resistance mutations (Tsp(r) and Rif(r)), indicating that the high frequency of emergence of a mutation for high-level kasugamycin resistance in the genetic background of ksgA is not due simply to increased persistence of the ksgA strain. Comparative genome sequencing showed that a mutation in the speD gene encoding S-adenosylmethionine decarboxylase is responsible for the observed high-level kasugamycin resistance. ksgA speD double mutants showed a markedly reduced level of intracellular spermidine, underlying the mechanism of high-level resistance. A growth competition assay indicated that, unlike rsmG mutation, the ksgA mutation is disadvantageous for overall growth fitness. This study clarified the similarities and differences between ksgA mutation and rsmG mutation, both of which share a common characteristic--failure to methylate the bases of 16S rRNA. Coexistence of the ksgA mutation and the rsmG mutation allowed cell viability. We propose that the ksgA mutation, together with the rsmG mutation, may provide a novel clue to uncover a still-unknown mechanism of mutation and ribosomal function.

摘要

甲基转移酶RsmG和KsgA使16S rRNA中的核苷酸G535(RsmG)以及A1518和A1519(KsgA)发生甲基化,通过引入突变使这些蛋白质失活,分别导致对链霉素和卡那霉素产生低水平抗性。在含有单个rrn操纵子(rrnO)的枯草芽孢杆菌菌株中,我们发现赋予卡那霉素适度抗性的ksgA自发突变以10⁻⁶的高频率发生。更重要的是,我们还发现一旦细胞获得ksgA突变,它们就会以极高的频率(比ksgA⁺菌株中观察到的频率高100倍)产生高水平的卡那霉素抗性,这是之前在rsmG突变体中报道过的现象。其他抗生素抗性突变(Tsp(r)和Rif(r))并非如此,这表明在ksgA的遗传背景中,高水平卡那霉素抗性突变的高频率出现并非仅仅是由于ksgA菌株的持续存在增加所致。比较基因组测序表明,编码S - 腺苷甲硫氨酸脱羧酶的speD基因中的突变是观察到的高水平卡那霉素抗性的原因。ksgA speD双突变体显示细胞内亚精胺水平显著降低,这是高水平抗性的潜在机制。生长竞争试验表明,与rsmG突变不同,ksgA突变对整体生长适应性不利。本研究阐明了ksgA突变和rsmG突变之间的异同,二者都有一个共同特征——无法使16S rRNA的碱基甲基化。ksgA突变和rsmG突变共存使细胞具有活力。我们提出,ksgA突变与rsmG突变一起,可能为揭示仍未知的突变和核糖体功能机制提供新线索。

相似文献

1
Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance.
Antimicrob Agents Chemother. 2009 Jan;53(1):193-201. doi: 10.1128/AAC.00873-08. Epub 2008 Nov 10.
3
Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli.
J Mol Biol. 1999 Oct 15;293(1):1-8. doi: 10.1006/jmbi.1999.3160.
6
ksgA mutations confer resistance to kasugamycin in Neisseria gonorrhoeae.
Int J Antimicrob Agents. 2009 Apr;33(4):321-7. doi: 10.1016/j.ijantimicag.2008.08.030. Epub 2008 Dec 18.
8
16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus.
Biochimie. 2015 Dec;119:166-74. doi: 10.1016/j.biochi.2015.10.027. Epub 2015 Nov 3.

引用本文的文献

1
RsmG methylation of 16S rRNA affects the function of ribosomal protein uS12.
Arch Microbiol. 2025 May 16;207(7):146. doi: 10.1007/s00203-025-04349-5.
3
Structure of the bacterial ribosome at 2 Å resolution.
Elife. 2020 Sep 14;9:e60482. doi: 10.7554/eLife.60482.
4
Dimethyl adenosine transferase (KsgA) contributes to cell-envelope fitness in Salmonella Enteritidis.
Microbiol Res. 2018 Nov;216:108-119. doi: 10.1016/j.micres.2018.08.009. Epub 2018 Aug 23.
5
Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA To Secure Translational Fidelity during Antibiotic Stress.
Antimicrob Agents Chemother. 2018 Sep 24;62(10). doi: 10.1128/AAC.00853-18. Print 2018 Oct.
7
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects.
J Antibiot (Tokyo). 2017 Jan;70(1):25-40. doi: 10.1038/ja.2016.82. Epub 2016 Jul 6.

本文引用的文献

1
Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.
Mol Microbiol. 2008 Dec;70(5):1062-75. doi: 10.1111/j.1365-2958.2008.06485.x.
2
Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
Mol Microbiol. 2008 Jan;67(2):291-304. doi: 10.1111/j.1365-2958.2007.06018.x. Epub 2007 Dec 7.
5
Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria.
Mol Microbiol. 2007 Feb;63(4):1096-106. doi: 10.1111/j.1365-2958.2006.05585.x.
6
Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.
J Biol Chem. 2007 Feb 23;282(8):5880-7. doi: 10.1074/jbc.M608214200. Epub 2006 Dec 21.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407.
J Mol Biol. 2006 Jun 9;359(3):777-86. doi: 10.1016/j.jmb.2006.04.007. Epub 2006 Apr 21.
10
Analysis of polyamines in higher plants by high performance liquid chromatography.
Plant Physiol. 1982 Mar;69(3):701-6. doi: 10.1104/pp.69.3.701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验