Bouet Jean-Yves, Lane David
Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France; Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France.
Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France.
J Biol Chem. 2009 Jan 2;284(1):165-173. doi: 10.1074/jbc.M802752200. Epub 2008 Nov 10.
Formation of a partition complex on plasmid F by binding of SopB protein to the sopC centromere is the first step in the partition process that ensures stability of F in dividing cells. Establishment of the complex enables nonspecific binding of SopB to neighboring DNA, which extends the partition complex and provokes reduction of negative supercoiling of the plasmid. This reduction is believed to reflect winding of DNA into positive supercoils about SopB to create a nucleoprotein structure of probable importance to partition. We have searched for evidence that SopB alters plasmid topology. Permutation analysis indicated only modest bending of linear DNA fragments, and in vivo DNase I footprinting revealed no enhanced cleavages indicating curvature. In vitro, SopB binding left no topological trace in relaxed-circular DNA treated with topoisomerase I or in nicked circles closed by ligase. In vivo, novobiocin-mediated inhibition of DNA gyrase relaxed a plasmid carrying the partition complex but left no residue of positive supercoils. Hence, SopB does not reduce plasmid supercoiling directly. We did observe that SopB partly prevented removal of negative supercoils from plasmid DNA by topoisomerase I and partly prevented ligation of nicked circles, indicating that it acts as a physical obstacle. The supercoil deficit is thus better explained as SopB recoating of just-replicated DNA, which shelters it from gyrase and from topological changes in SopB-free DNA. This topological simplicity distinguishes the Sop partition complex from other complexes described.
通过SopB蛋白与sopC着丝粒结合在质粒F上形成分区复合物是分区过程的第一步,这确保了F在分裂细胞中的稳定性。复合物的形成使得SopB能够与相邻DNA进行非特异性结合,从而扩展分区复合物并促使质粒负超螺旋减少。据信这种减少反映了DNA围绕SopB缠绕成正超螺旋,以形成对分区可能重要的核蛋白结构。我们寻找了SopB改变质粒拓扑结构的证据。置换分析仅表明线性DNA片段有适度弯曲,体内DNase I足迹分析未发现表明曲率增加的增强切割。在体外,SopB结合在用拓扑异构酶I处理的松弛环状DNA或用连接酶封闭的带切口环状DNA中未留下拓扑痕迹。在体内,新生霉素介导的对DNA促旋酶的抑制使携带分区复合物的质粒松弛,但未留下正超螺旋残余。因此,SopB不会直接降低质粒超螺旋。我们确实观察到SopB部分阻止了拓扑异构酶I从质粒DNA上去除负超螺旋,部分阻止了带切口环状DNA的连接,表明它起到了物理障碍的作用。因此,超螺旋不足更好地解释为SopB重新覆盖刚复制的DNA,使其免受促旋酶作用以及无SopB的DNA拓扑变化的影响。这种拓扑简单性将Sop分区复合物与所描述的其他复合物区分开来。