Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France.
LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.
Mol Syst Biol. 2018 Nov 16;14(11):e8516. doi: 10.15252/msb.20188516.
Chromosome and plasmid segregation in bacteria are mostly driven by ParAB systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (). However, the mechanism of how a few -bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of , indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes.
细菌中的染色体和质粒分离主要由 ParAB 系统驱动。这些 DNA 分区机制依赖于组装在着丝粒位点上的大型核蛋白复合物。然而,尽管有几个提出的物理数学模型,少数 ParB 结合蛋白如何引发高度浓缩的 ParB 簇的形成的机制仍不清楚。我们通过使用 F 质粒分区系统改变一些关键参数来区分这些不同的模型。我们发现,“成核与笼状化”是唯一能重现数据的连贯模型。我们还表明,分区复合物的随机自组装(i)是一种稳健的机制,(ii)不直接涉及 ParA ATP 酶,(iii)导致离散大小的动态结构,与 ParB 浓度无关,(iv)不受活跃转录的干扰,但受蛋白质复合物的干扰。我们改进了“成核与笼状化”模型,并成功地将其应用于 的染色体编码 Par 系统,表明这种随机自组装机制从质粒到染色体广泛保守。