Suppr超能文献

用于评估和区分肌肉伪迹的脑电图窗口化统计小波评分

EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts.

作者信息

Vialatte François-Benoit, Solé-Casals Jordi, Cichocki Andrzej

机构信息

Lab ABSP, RIKEN Brain Science Institute, Wako-Shi, Japan.

出版信息

Physiol Meas. 2008 Dec;29(12):1435-52. doi: 10.1088/0967-3334/29/12/007. Epub 2008 Nov 11.

Abstract

EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time-frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts-with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning of EEG data is then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443-9).

摘要

脑电图(EEG)记录通常会被虚假的脑外伪迹所干扰,从业者应将其剔除或清理。由于人工筛查人类脑电图本身容易出错且可能导致实验偏差,因此自动伪迹检测是一个重要问题。自动伪迹检测是获得客观且纯净结果的最佳保证。我们提出了一种基于肌肉伪迹的时频形状的新方法,以实现可靠的自动评分。通过强调对脑电图活动的分析,使用这种方法可以评估肌肉活动对信号的影响。该方法用于区分诱发电位与几种记录到的肌肉伪迹类型,灵敏度为98.8%,特异性为92.2%。然后,结合独立成分分析,使用该方法成功实现了脑电图数据的自动清理。然后将自动清理的结果与Delorme等人(2007年,《神经图像》34卷,1443 - 1449页)引入的基于斯莱皮安多窗谱的技术进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验