Suppr超能文献

对几种原子和分子性质的密度泛函方法性能的批判性评估。

Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties.

作者信息

Riley Kevin E, Op't Holt Bryan T, Merz Kenneth M

机构信息

Department of Chemistry and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, FL 32611-8435.

出版信息

J Chem Theory Comput. 2007;3(2):407-433. doi: 10.1021/ct600185a.

Abstract

The reliable prediction of molecular properties is a vital task of computational chemistry. In recent years, density functional theory (DFT) has become a popular method for calculating molecular properties for a vast array of systems varying in size from small organic molecules to large biological compounds such as proteins. In this work we assess the ability of many DFT methods to accurately determine atomic and molecular properties for small molecules containing elements commonly found in proteins, DNA, and RNA. These properties include bond lengths, bond angles, ground state vibrational frequencies, electron affinities, ionization potentials, heats of formation, hydrogen bond interaction energies, conformational energies, and reaction barrier heights. Calculations are carried out with the 3-21G*, 6-31G*, 3-21+G*, 6-31+G*, 6-31++G*, cc-pVxZ, and aug-cc-pVxZ (x=D,T) basis sets, while bond distance and bond angle calculations are also done using the cc-pVQZ and aug-cc-pVQZ basis sets. Members of the popular functional classes, namely, LSDA, GGA, meta-GGA, hybrid-GGA, and hybrid-meta-GGA, are considered in this work. For the purpose of comparison, Hartree-Fock (HF) and second order many-body perturbation (MP2) methods are also assessed in terms of their ability to determine these physical properties. Ultimately, it is observed that the split valence bases of the 6-31G variety provide accuracies similar to those of the more computationally expensive Dunning type basis sets. Another conclusion from this survey is that the hybrid-meta-GGA functionals are typically among the most accurate functionals for all of the properties examined in this work.

摘要

分子性质的可靠预测是计算化学的一项重要任务。近年来,密度泛函理论(DFT)已成为一种流行的方法,用于计算各种系统的分子性质,这些系统的大小从小有机分子到诸如蛋白质等大型生物化合物不等。在这项工作中,我们评估了许多DFT方法准确确定含蛋白质、DNA和RNA中常见元素的小分子的原子和分子性质的能力。这些性质包括键长、键角、基态振动频率、电子亲和能、电离势、生成热、氢键相互作用能、构象能和反应势垒高度。计算使用3 - 21G*、6 - 31G*、3 - 21 + G*、6 - 31 + G*、6 - 31 ++ G*、cc - pVxZ和aug - cc - pVxZ(x = D,T)基组进行,同时键长和键角计算也使用cc - pVQZ和aug - cc - pVQZ基组进行。在这项工作中考虑了流行泛函类别的成员,即LSDA、GGA、meta - GGA、杂化 - GGA和杂化 - meta - GGA。为了进行比较,还评估了Hartree - Fock(HF)和二阶多体微扰(MP2)方法确定这些物理性质的能力。最终,观察到6 - 31G变体的分裂价基组提供的精度与计算成本更高的Dunning型基组相似。这项调查的另一个结论是,杂化 - meta - GGA泛函通常是这项工作中所研究的所有性质最准确的泛函之一。

相似文献

4
Evaluation of Density Functionals and Basis Sets for Carbohydrates.碳水化合物的密度泛函和基组评估。
J Chem Theory Comput. 2009 Apr 14;5(4):679-92. doi: 10.1021/ct8004479. Epub 2009 Mar 4.

引用本文的文献

9
Deep Learning Coordinate-Free Quantum Chemistry.深度学习无坐标量子化学。
J Phys Chem A. 2021 Oct 14;125(40):8978-8986. doi: 10.1021/acs.jpca.1c04462. Epub 2021 Oct 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验