Suppr超能文献

深度学习无坐标量子化学。

Deep Learning Coordinate-Free Quantum Chemistry.

机构信息

Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, Missouri 63130, United States.

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

出版信息

J Phys Chem A. 2021 Oct 14;125(40):8978-8986. doi: 10.1021/acs.jpca.1c04462. Epub 2021 Oct 5.

Abstract

Computing quantum chemical properties of small molecules and polymers can provide insights valuable into physicists, chemists, and biologists when designing new materials, catalysts, biological probes, and drugs. Deep learning can compute quantum chemical properties accurately in a fraction of time required by commonly used methods such as density functional theory. Most current approaches to deep learning in quantum chemistry begin with geometric information from experimentally derived molecular structures or pre-calculated atom coordinates. These approaches have many useful applications, but they can be costly in time and computational resources. In this study, we demonstrate that accurate quantum chemical computations can be performed without geometric information by operating in the coordinate-free domain using deep learning on graph encodings. Coordinate-free methods rely only on molecular graphs, the connectivity of atoms and bonds, without atom coordinates or bond distances. We also find that the choice of graph-encoding architecture substantially affects the performance of these methods. The structures of these graph-encoding architectures provide an opportunity to probe an important, outstanding question in quantum mechanics: what types of quantum chemical properties can be represented by local variable models? We find that Wave, a local variable model, accurately calculates the quantum chemical properties, while graph convolutional architectures require global variables. Furthermore, local variable Wave models outperform global variable graph convolution models on complex molecules with large, correlated systems.

摘要

计算小分子和聚合物的量子化学性质可以为物理学家、化学家、生物学家在设计新材料、催化剂、生物探针和药物时提供有价值的见解。深度学习可以在通常使用的方法(如密度泛函理论)所需的时间的一小部分内准确计算量子化学性质。量子化学中深度学习的大多数当前方法都从实验得出的分子结构或预先计算的原子坐标的几何信息开始。这些方法有许多有用的应用,但它们在时间和计算资源方面可能代价高昂。在这项研究中,我们证明了通过在坐标自由域中使用图编码进行深度学习,而无需几何信息,就可以进行准确的量子化学计算。坐标自由方法仅依赖于分子图,即原子和键的连接性,而不依赖于原子坐标或键距离。我们还发现,图编码架构的选择对这些方法的性能有很大影响。这些图编码架构的结构为量子力学中的一个重要而悬而未决的问题提供了一个探索机会:哪些类型的量子化学性质可以用局部变量模型表示?我们发现,局部变量模型 Wave 可以准确地计算量子化学性质,而图卷积架构则需要全局变量。此外,局部变量 Wave 模型在具有大型相关系统的复杂分子上优于全局变量图卷积模型。

相似文献

1
Deep Learning Coordinate-Free Quantum Chemistry.
J Phys Chem A. 2021 Oct 14;125(40):8978-8986. doi: 10.1021/acs.jpca.1c04462. Epub 2021 Oct 5.
2
Learning a Local-Variable Model of Aromatic and Conjugated Systems.
ACS Cent Sci. 2018 Jan 24;4(1):52-62. doi: 10.1021/acscentsci.7b00405. Epub 2018 Jan 3.
3
Boosting Graph Neural Networks with Molecular Mechanics: A Case Study of Sigma Profile Prediction.
J Chem Theory Comput. 2023 Dec 26;19(24):9318-9328. doi: 10.1021/acs.jctc.3c01003. Epub 2023 Dec 8.
4
Site-Level Bioactivity of Small-Molecules from Deep-Learned Representations of Quantum Chemistry.
J Phys Chem A. 2020 Nov 5;124(44):9194-9202. doi: 10.1021/acs.jpca.0c06231. Epub 2020 Oct 21.
6
Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
J Chem Theory Comput. 2023 Sep 12;19(17):5910-5923. doi: 10.1021/acs.jctc.3c00344. Epub 2023 Aug 15.
7
Learning Joint 2-D and 3-D Graph Diffusion Models for Complete Molecule Generation.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11857-11871. doi: 10.1109/TNNLS.2024.3416328. Epub 2024 Sep 3.
8
Carbon-based molecular properties efficiently predicted by deep learning-based quantum chemical simulation with large language models.
Comput Biol Med. 2024 Jun;176:108531. doi: 10.1016/j.compbiomed.2024.108531. Epub 2024 May 1.
9
Co-Embedding of Nodes and Edges With Graph Neural Networks.
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7075-7086. doi: 10.1109/TPAMI.2020.3029762. Epub 2023 May 5.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results.
J Chem Theory Comput. 2023 Sep 26;19(18):6185-6196. doi: 10.1021/acs.jctc.3c00491. Epub 2023 Sep 13.

本文引用的文献

1
Site-Level Bioactivity of Small-Molecules from Deep-Learned Representations of Quantum Chemistry.
J Phys Chem A. 2020 Nov 5;124(44):9194-9202. doi: 10.1021/acs.jpca.0c06231. Epub 2020 Oct 21.
2
OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features.
J Chem Phys. 2020 Sep 28;153(12):124111. doi: 10.1063/5.0021955.
4
5
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
J Chem Theory Comput. 2019 Jun 11;15(6):3678-3693. doi: 10.1021/acs.jctc.9b00181. Epub 2019 May 14.
6
Towards exact molecular dynamics simulations with machine-learned force fields.
Nat Commun. 2018 Sep 24;9(1):3887. doi: 10.1038/s41467-018-06169-2.
7
A machine learning approach for somatic mutation discovery.
Sci Transl Med. 2018 Sep 5;10(457). doi: 10.1126/scitranslmed.aar7939.
8
Automated deep-neural-network surveillance of cranial images for acute neurologic events.
Nat Med. 2018 Sep;24(9):1337-1341. doi: 10.1038/s41591-018-0147-y. Epub 2018 Aug 13.
9
Deep reinforcement learning for de novo drug design.
Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. eCollection 2018 Jul.
10
Inverse molecular design using machine learning: Generative models for matter engineering.
Science. 2018 Jul 27;361(6400):360-365. doi: 10.1126/science.aat2663. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验