Suppr超能文献

利用细胞大小动力学确定杆状病毒表达载体系统感染 Spodoptera frugiperda 和 Trichoplusia ni BTI-TN-5B1-4 细胞后表达增强型绿色荧光蛋白的最佳收获时间。

Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein.

机构信息

Innovatis AG, Bielefeld, Germany,

出版信息

Cytotechnology. 2007 May;54(1):35-48. doi: 10.1007/s10616-007-9064-5. Epub 2007 Apr 14.

Abstract

Infecting insect cells with a baculovirus expression vector system (BEVS) is an increasingly popular method for the production of recombinant proteins. Due to the lytic nature of the system, however, determining the optimal harvest time is critical for maximizing protein yield. We found that measuring the change in average diameter during the progress of infection with an automated cell analysis system (Cedex HiRes, Innovatis AG) could be used to determine the time of maximum protein production and, thus, optimal harvest time. As a model system, we use insect cells infected with a baculovirus expressing enhanced green fluorescent protein (EGFP). We infected two commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-TN-5B1-4 (Hi5) with an Autographa californica nuclear polyhedrosis virus (AcNPV) encoding EGFP at various multiplicities of infection (MOI). We monitored the progress of infection with regard to viability, viable cell density and change in average cell diameter with a Cedex HiRes analyzer and compared the results to the EGFP produced. Peak protein production was reached one to two days after the point of maximum average diameter in all conditions. Thus, optimal harvest time could be determined by monitoring the change in average cell diameter during the course of an infection of a cell culture.

摘要

用杆状病毒表达载体系统 (BEVS) 感染昆虫细胞是生产重组蛋白的一种越来越流行的方法。然而,由于该系统具有裂解性质,因此确定最佳收获时间对于最大限度地提高蛋白质产量至关重要。我们发现,使用自动化细胞分析系统 (Cedex HiRes,Innovatis AG) 测量感染过程中平均直径的变化,可以用于确定最大蛋白质产量的时间,从而确定最佳收获时间。作为模型系统,我们使用表达增强型绿色荧光蛋白 (EGFP) 的杆状病毒感染昆虫细胞。我们用编码 EGFP 的美洲棉铃虫核多角体病毒 (AcNPV) 感染两种常用的昆虫细胞系,草地贪夜蛾 (Sf-9) 和秋粘虫 BTI-TN-5B1-4 (Hi5),感染复数 (MOI) 不同。我们使用 Cedex HiRes 分析仪监测与活力、活细胞密度和平均细胞直径变化相关的感染进展,并将结果与产生的 EGFP 进行比较。在所有条件下,最大平均直径点后一到两天达到蛋白质产量峰值。因此,通过监测细胞培养物感染过程中平均细胞直径的变化,可以确定最佳收获时间。

相似文献

引用本文的文献

本文引用的文献

7
Monitoring the progress of infection and recombinant protein production in insect cell cultures using intracellular ATP measurement.
Appl Microbiol Biotechnol. 2004 Jul;65(1):18-24. doi: 10.1007/s00253-003-1550-x. Epub 2004 Jan 31.
8
Biotechnological applications of green fluorescent protein.绿色荧光蛋白的生物技术应用。
Appl Microbiol Biotechnol. 2003 Sep;62(4):303-15. doi: 10.1007/s00253-003-1339-y. Epub 2003 May 27.
9
Insect cell culture for industrial production of recombinant proteins.用于重组蛋白工业化生产的昆虫细胞培养。
Appl Microbiol Biotechnol. 2003 Jul;62(1):1-20. doi: 10.1007/s00253-003-1223-9. Epub 2003 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验