Innovatis AG, Bielefeld, Germany,
Cytotechnology. 2007 May;54(1):35-48. doi: 10.1007/s10616-007-9064-5. Epub 2007 Apr 14.
Infecting insect cells with a baculovirus expression vector system (BEVS) is an increasingly popular method for the production of recombinant proteins. Due to the lytic nature of the system, however, determining the optimal harvest time is critical for maximizing protein yield. We found that measuring the change in average diameter during the progress of infection with an automated cell analysis system (Cedex HiRes, Innovatis AG) could be used to determine the time of maximum protein production and, thus, optimal harvest time. As a model system, we use insect cells infected with a baculovirus expressing enhanced green fluorescent protein (EGFP). We infected two commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-TN-5B1-4 (Hi5) with an Autographa californica nuclear polyhedrosis virus (AcNPV) encoding EGFP at various multiplicities of infection (MOI). We monitored the progress of infection with regard to viability, viable cell density and change in average cell diameter with a Cedex HiRes analyzer and compared the results to the EGFP produced. Peak protein production was reached one to two days after the point of maximum average diameter in all conditions. Thus, optimal harvest time could be determined by monitoring the change in average cell diameter during the course of an infection of a cell culture.
用杆状病毒表达载体系统 (BEVS) 感染昆虫细胞是生产重组蛋白的一种越来越流行的方法。然而,由于该系统具有裂解性质,因此确定最佳收获时间对于最大限度地提高蛋白质产量至关重要。我们发现,使用自动化细胞分析系统 (Cedex HiRes,Innovatis AG) 测量感染过程中平均直径的变化,可以用于确定最大蛋白质产量的时间,从而确定最佳收获时间。作为模型系统,我们使用表达增强型绿色荧光蛋白 (EGFP) 的杆状病毒感染昆虫细胞。我们用编码 EGFP 的美洲棉铃虫核多角体病毒 (AcNPV) 感染两种常用的昆虫细胞系,草地贪夜蛾 (Sf-9) 和秋粘虫 BTI-TN-5B1-4 (Hi5),感染复数 (MOI) 不同。我们使用 Cedex HiRes 分析仪监测与活力、活细胞密度和平均细胞直径变化相关的感染进展,并将结果与产生的 EGFP 进行比较。在所有条件下,最大平均直径点后一到两天达到蛋白质产量峰值。因此,通过监测细胞培养物感染过程中平均细胞直径的变化,可以确定最佳收获时间。