Suppr超能文献

一种解释宽视野无长突细胞的视网膜电路模型。

A retinal circuit model accounting for wide-field amacrine cells.

机构信息

Department of Human and Environmental Informatics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami , Kumamoto, 860-8555, Japan,

出版信息

Cogn Neurodyn. 2009 Mar;3(1):25-32. doi: 10.1007/s11571-008-9059-8. Epub 2008 Sep 24.

Abstract

In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the "linear-nonlinear" (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the circuit elements could explain the higher-order retinal functions. However, in such a model, each class of retinal neurons is mostly omitted and thus, how those neurons play roles in the visual computations cannot be explored. Here, we present a spatio-temporal computational model of the vertebrate retina, based on the response function for each class of retinal neurons and on the anatomical inter-cellular connections. This model was capable of not only reproducing the spatio-temporal filtering properties of the outer retinal neurons, but also realizing the object segregation mechanism in the inner retinal circuit involving the "wide-field" amacrine cells. Moreover, the first-order Wiener kernels calculated for the neurons in our model showed a reasonable fit to the kernels previously measured in the real retinal neuron in situ.

摘要

在过去关于脊椎动物视觉处理的实验研究中,即使在视网膜阶段也发现了较高阶的视觉功能,如将物体从背景中分离出来。此前,“线性-非线性”(LN)级联模型已应用于视网膜电路,并成功描述了电路的某些部分的输入-输出动态,例如外视网膜神经元的感受野。最近,一些由 LN 级联作为电路元件组成的抽象模型可以解释高阶视网膜功能。然而,在这样的模型中,大多数视网膜神经元被省略,因此无法探索这些神经元在视觉计算中的作用。在这里,我们提出了一种基于脊椎动物视网膜的时空计算模型,该模型基于每个类别的视网膜神经元的响应函数以及细胞间的解剖连接。该模型不仅能够再现外视网膜神经元的时空滤波特性,还能够实现涉及“宽场”无长突细胞的内视网膜电路中的物体分离机制。此外,我们模型中神经元的一阶维纳核与之前在真实视网膜神经元原位测量的核具有合理的拟合度。

相似文献

1
A retinal circuit model accounting for wide-field amacrine cells.
Cogn Neurodyn. 2009 Mar;3(1):25-32. doi: 10.1007/s11571-008-9059-8. Epub 2008 Sep 24.
2
A single retinal circuit model for multiple computations.
Biol Cybern. 2018 Oct;112(5):427-444. doi: 10.1007/s00422-018-0767-9. Epub 2018 Jun 27.
3
Response dynamics and receptive-field organization of catfish amacrine cells.
J Neurophysiol. 1992 Feb;67(2):430-42. doi: 10.1152/jn.1992.67.2.430.
5
A retinal circuit for the suppressed-by-contrast receptive field of a polyaxonal amacrine cell.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9577-9583. doi: 10.1073/pnas.1913417117. Epub 2020 Apr 9.
6
Signal transmission in the catfish retina. V. Sensitivity and circuit.
J Neurophysiol. 1987 Dec;58(6):1329-50. doi: 10.1152/jn.1987.58.6.1329.
7
Retinal Processing: Insights from Mathematical Modelling.
J Imaging. 2022 Jan 17;8(1):14. doi: 10.3390/jimaging8010014.
8
Timing and computation in inner retinal circuitry.
Annu Rev Physiol. 2007;69:271-90. doi: 10.1146/annurev.physiol.69.120205.124451.
9
Amacrine cell-mediated input to bipolar cells: variations on a common mechanistic theme.
Vis Neurosci. 2012 Jan;29(1):41-9. doi: 10.1017/S0952523811000241.
10
The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior.
J Neurosci. 2002 Oct 1;22(19):8726-38. doi: 10.1523/JNEUROSCI.22-19-08726.2002.

引用本文的文献

1
Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat.
Cogn Neurodyn. 2012 Aug;6(4):307-24. doi: 10.1007/s11571-011-9183-8. Epub 2011 Nov 26.
2
A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus.
Cogn Neurodyn. 2012 Jun;6(3):259-81. doi: 10.1007/s11571-012-9198-9. Epub 2012 Mar 25.

本文引用的文献

1
A retinal circuit that computes object motion.
J Neurosci. 2008 Jul 2;28(27):6807-17. doi: 10.1523/JNEUROSCI.4206-07.2008.
2
Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells.
J Neurophysiol. 2007 Jun;97(6):4327-40. doi: 10.1152/jn.01091.2006. Epub 2007 Apr 25.
3
Timing and computation in inner retinal circuitry.
Annu Rev Physiol. 2007;69:271-90. doi: 10.1146/annurev.physiol.69.120205.124451.
4
Populations of wide-field amacrine cells in the mouse retina.
J Comp Neurol. 2006 Dec 10;499(5):797-809. doi: 10.1002/cne.21126.
5
Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque.
J Neurosci. 2006 Aug 23;26(34):8715-26. doi: 10.1523/JNEUROSCI.0821-06.2006.
6
The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing.
J Comput Neurosci. 2006 Oct;21(2):131-51. doi: 10.1007/s10827-006-7863-x. Epub 2006 May 26.
7
Vision: The retina's fancy tricks.
Nature. 2003 May 22;423(6938):387-8. doi: 10.1038/423387a.
8
Segregation of object and background motion in the retina.
Nature. 2003 May 22;423(6938):401-8. doi: 10.1038/nature01652. Epub 2003 May 11.
9
10
Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.
J Neurophysiol. 2003 May;89(5):2449-58. doi: 10.1152/jn.00916.2002. Epub 2002 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验