Bramham Clive R, Worley Paul F, Moore Melissa J, Guzowski John F
Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, 5009 Bergen, Norway.
J Neurosci. 2008 Nov 12;28(46):11760-7. doi: 10.1523/JNEUROSCI.3864-08.2008.
In a manner unique among activity-regulated immediate early genes (IEGs), mRNA encoded by Arc (also known as Arg3.1) undergoes rapid transport to dendrites and local synaptic translation. Despite this intrinsic appeal, relatively little is known about the neuronal and behavioral functions of Arc or its molecular mechanisms of action. Here, we attempt to distill recent advances on Arc spanning its transcriptional and translational regulation, the functions of the Arc protein in multiple forms of neuronal plasticity [long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity], and its broader role in neural networks of behaving animals. Worley and colleagues have shown that Arc interacts with endophilin and dynamin, creating a postsynaptic trafficking endosome that selectively modifies the expression of AMPA-type glutamate receptors at the excitatory synapses. Both LTD and homeostatic plasticity in the hippocampus are critically dependent on Arc-mediated endocytosis of AMPA receptors. LTD evoked by activation of metabotropic glutamate receptors depends on rapid Arc translation controlled by elongation factor 2. Bramham and colleagues have shown that sustained translation of newly induced Arc mRNA is necessary for cofilin phosphorylation and stable expansion of the F-actin cytoskeleton underlying LTP consolidation in the dentate gyrus of live rats. In addition to regulating F-actin, Arc synthesis maintains the activity of key translation factors during LTP consolidation. This process of Arc-dependent consolidation is activated by the secretory neurotrophin, BDNF. Moore and colleagues have shown that Arc mRNA is a natural target for nonsense-mediated mRNA decay (NMD) by virtue of its two conserved 3'-UTR introns. NMD and other related translation-dependent mRNA decay mechanisms may serve as critical brakes on protein expression that contribute to the fine spatial-temporal control of Arc synthesis. In studies in behaving rats, Guzowski and colleagues have shown that location-specific firing of CA3 and CA1 hippocampal neurons in the presence of theta rhythm provides the necessary stimuli for activation of Arc transcription. The impact of Arc transcription in memory processes may depend on the specific context of coexpressed IEGs, in addition to posttranscriptional regulation of Arc by neuromodulatory inputs from the amygdala and other brain regions. In sum, Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to diverse forms of synaptic plasticity, thereby optimizing information storage in active networks.
在活性调节的即刻早期基因(IEGs)中,Arc(也称为Arg3.1)编码的mRNA以独特的方式迅速转运至树突并进行局部突触翻译。尽管具有这种内在吸引力,但人们对Arc的神经元和行为功能及其分子作用机制了解相对较少。在这里,我们试图总结Arc在转录和翻译调控、Arc蛋白在多种形式的神经元可塑性[长时程增强(LTP)、长时程抑制(LTD)和稳态可塑性]中的功能以及其在行为动物神经网络中的更广泛作用方面的最新进展。沃利及其同事表明,Arc与内吞素和发动蛋白相互作用,形成一个突触后运输内体,该内体选择性地改变兴奋性突触处AMPA型谷氨酸受体的表达。海马体中的LTD和稳态可塑性都严重依赖于Arc介导的AMPA受体的内吞作用。代谢型谷氨酸受体激活诱发的LTD依赖于由延伸因子2控制的Arc快速翻译。布拉姆哈姆及其同事表明,新诱导的Arc mRNA的持续翻译对于活大鼠齿状回中LTP巩固过程中丝切蛋白的磷酸化和F-肌动蛋白细胞骨架的稳定扩展是必要的。除了调节F-肌动蛋白外,Arc合成在LTP巩固过程中维持关键翻译因子的活性。这种Arc依赖的巩固过程由分泌性神经营养因子脑源性神经营因子(BDNF)激活。摩尔及其同事表明Arc mRNA由于其两个保守的3'-UTR内含子而成为无义介导的mRNA降解(NMD)的天然靶点。NMD和其他相关的翻译依赖性mRNA降解机制可能作为蛋白质表达的关键制动器,有助于Arc合成的精细时空控制。在对行为大鼠的研究中,古佐夫斯基及其同事表明,在存在θ节律的情况下,海马体CA3和CA1神经元的位置特异性放电为Arc转录的激活提供了必要的刺激。除了杏仁核和其他脑区的神经调节输入对Arc的转录后调控外,Arc转录在记忆过程中的影响可能还取决于共表达的IEGs的具体背景。总之,Arc正在成为一个多功能、精细调节的系统,能够将神经元活动模式的变化与多种形式的突触可塑性耦合起来,从而优化活跃网络中的信息存储。