Suppr超能文献

肌酸及其针对神经退行性疾病中细胞能量损伤的潜在治疗价值。

Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases.

作者信息

Adhihetty Peter J, Beal M Flint

机构信息

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA.

出版信息

Neuromolecular Med. 2008;10(4):275-90. doi: 10.1007/s12017-008-8053-y. Epub 2008 Nov 13.

Abstract

Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatine kinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), and Huntington's disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington's and Parkinson's disease but appears to be less effective for ALS and Alzheimer's disease.

摘要

大量证据表明,生物能量功能障碍和线粒体损伤直接和/或间接导致了许多神经退行性疾病的发病机制。旨在改善这些神经退行性疾病中细胞能量不足和/或改善线粒体功能的治疗模式可能被证明是一种有用的治疗干预措施。肌酸是一种内源性产生且可通过饮食外源性获取的分子,是参与缓冲细胞内能量储备的极其重要的分子。一旦肌酸被转运到细胞中,肌酸激酶通过ATP催化肌酸的可逆转磷酸化,以增强磷酸肌酸能量池。肌酸激酶位于细胞内的关键位置,将高能量消耗区域与ATP的高效再生相耦合。因此,肌酸激酶/磷酸肌酸系统在能量缓冲和整体细胞生物能量学中起着不可或缺的作用。最初,外源性补充肌酸仅被广泛用作一种提高肌肉内磷酸肌酸池以增强运动表现的促力剂。然而,最近已经针对各种与生物能量缺陷相关的神经退行性疾病研究了补充肌酸的潜在治疗价值,这些疾病在疾病病因和/或进展中起作用,包括阿尔茨海默病、帕金森病、肌萎缩侧索硬化症(ALS)和亨廷顿舞蹈症。本综述讨论了线粒体和生物能量学对这些神经退行性疾病进展的贡献,并研究了补充肌酸在每种神经疾病中的潜在神经保护价值。总之,目前的文献表明,外源性补充肌酸作为一种治疗模式在亨廷顿舞蹈症和帕金森病中最有效,但对ALS和阿尔茨海默病似乎效果较差。

相似文献

1
Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases.
Neuromolecular Med. 2008;10(4):275-90. doi: 10.1007/s12017-008-8053-y. Epub 2008 Nov 13.
2
Functions and effects of creatine in the central nervous system.
Brain Res Bull. 2008 Jul 1;76(4):329-43. doi: 10.1016/j.brainresbull.2008.02.035. Epub 2008 Mar 24.
3
The neuroprotective role of creatine.
Subcell Biochem. 2007;46:205-43. doi: 10.1007/978-1-4020-6486-9_11.
4
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
5
Mitochondrial medicine for aging and neurodegenerative diseases.
Neuromolecular Med. 2008;10(4):291-315. doi: 10.1007/s12017-008-8044-z. Epub 2008 Jun 20.
6
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012.
7
Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
J Neurol Sci. 2007 Jun 15;257(1-2):221-39. doi: 10.1016/j.jns.2007.01.033. Epub 2007 Apr 25.
8
New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders.
Curr Pharm Des. 2017;23(5):731-752. doi: 10.2174/1381612822666161230144517.
9
Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases.
Rev Neurosci. 2024 Aug 20;36(1):53-90. doi: 10.1515/revneuro-2024-0080. Print 2025 Jan 29.

引用本文的文献

3
Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis.
Int J Mol Sci. 2024 Dec 8;25(23):13190. doi: 10.3390/ijms252313190.
4
Illustrate the metabolic regulatory mechanism of Taohong Siwu decoction in ischemic stroke by mass spectrometry imaging.
Anal Bioanal Chem. 2024 Dec;416(29):6931-6944. doi: 10.1007/s00216-024-05591-4. Epub 2024 Oct 28.
5
Elucidating the Antiglycation Effect of Creatine on Methylglyoxal-Induced Carbonyl Stress In Vitro.
Int J Mol Sci. 2024 Oct 10;25(20):10880. doi: 10.3390/ijms252010880.
6
The metabolic signature of blood lipids: a causal inference study using twins.
J Lipid Res. 2024 Sep;65(9):100625. doi: 10.1016/j.jlr.2024.100625. Epub 2024 Sep 19.
7
Creatine Kinase and Respiratory Decline in Amyotrophic Lateral Sclerosis.
Brain Sci. 2024 Jun 28;14(7):661. doi: 10.3390/brainsci14070661.
9
Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies.
Front Neurosci. 2023 Jun 29;17:1201971. doi: 10.3389/fnins.2023.1201971. eCollection 2023.
10
The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity.
Front Nutr. 2022 Nov 22;9:992120. doi: 10.3389/fnut.2022.992120. eCollection 2022.

本文引用的文献

1
Functions and effects of creatine in the central nervous system.
Brain Res Bull. 2008 Jul 1;76(4):329-43. doi: 10.1016/j.brainresbull.2008.02.035. Epub 2008 Mar 24.
3
Cognitive impairment in amyotrophic lateral sclerosis.
Lancet Neurol. 2007 Nov;6(11):994-1003. doi: 10.1016/S1474-4422(07)70265-X.
4
Parkinson's disease.
Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R183-94. doi: 10.1093/hmg/ddm159.
8
Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer's disease.
Curr Alzheimer Res. 2006 Sep;3(4):339-49. doi: 10.2174/156720506778249489.
9
Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D.
J Physiol. 2006 Jul 1;574(Pt 1):319-27. doi: 10.1113/jphysiol.2006.109702. Epub 2006 May 4.
10
Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole.
Cardiovasc Res. 2006 May 1;70(2):191-9. doi: 10.1016/j.cardiores.2006.01.016. Epub 2006 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验