Suppr超能文献

单锥形聚合物纳米通道中的生物传感与超分子生物共轭。生物识别元件轻松融入纳米受限几何结构。

Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries.

作者信息

Ali Mubarak, Yameen Basit, Neumann Reinhard, Ensinger Wolfgang, Knoll Wolfgang, Azzaroni Omar

机构信息

Technische Universität Darmstadt, Fachbereich Material-u. Geowissenschaften, Fachgebiet Chemische Analytik, Petersenstrasse 23, D-64287 Darmstadt, Germany.

出版信息

J Am Chem Soc. 2008 Dec 3;130(48):16351-7. doi: 10.1021/ja8071258.

Abstract

There is a growing quest for tailorable nanochannels or nanopores having dimensions comparable to the size of biological molecules and mimicking the function of biological ion channels. This interest is based on the use of nanochannels as extremely sensitive single molecule biosensors. The biosensing capabilities of these nanochannels depend sensitively on the surface characteristics of their inner walls to achieve the desired functionality of the biomimetic system. Nanoscale control over the surface properties of the nanochannel plays a crucial role in the biosensing performance due to the chemical groups incorporated on the inner channel walls that act as binding sites for different analytes and interact with molecules passing through the channel. Here we report a new approach to incorporate biosensing elements into polymer nanochannels by using electrostatic self-assembly. We describe a facile strategy based on the use of bifunctional macromolecular ligands to electrostatically assemble biorecongnition sites into the nanochannel wall, which can then be used as recognition elements for constructing a nanobiosensor. The experimental results demonstrate that the ligand-functionalized nanochannels are very stable and the biorecognition event (protein conjugation) does not promote the removal of the ligands from the channel surface. In addition, control experiments indicated that the electrostatically assembled nanochannel surface displays good biospecificity and nonfouling properties. Then, we demonstrate that this approach also enables the creation of supramolecular multilayered structures inside the nanopore that are stabilized by strong ligand-receptor interactions. We envision that the formation of multilayered supramolecular assemblies inside solid-state nanochannels will play a key role in the further expansion of the toolbox called "soft nanotechnology", as well as in the construction of new multifunctional biomimetic systems.

摘要

人们对尺寸与生物分子大小相当且能模拟生物离子通道功能的可定制纳米通道或纳米孔的探索日益增加。这种兴趣源于将纳米通道用作极其灵敏的单分子生物传感器。这些纳米通道的生物传感能力敏感地取决于其内壁的表面特性,以实现仿生系统所需的功能。由于内通道壁上掺入的化学基团充当不同分析物的结合位点并与穿过通道的分子相互作用,对纳米通道表面性质的纳米级控制在生物传感性能中起着关键作用。在此,我们报告一种通过静电自组装将生物传感元件整合到聚合物纳米通道中的新方法。我们描述了一种基于使用双功能大分子配体将生物识别位点静电组装到纳米通道壁中的简便策略,然后可将其用作构建纳米生物传感器的识别元件。实验结果表明,配体功能化的纳米通道非常稳定,生物识别事件(蛋白质缀合)不会促进配体从通道表面去除。此外,对照实验表明,静电组装的纳米通道表面具有良好的生物特异性和抗污性能。然后,我们证明这种方法还能够在纳米孔内创建由强配体 - 受体相互作用稳定的超分子多层结构。我们设想,固态纳米通道内多层超分子组装体的形成将在称为“软纳米技术”的工具箱的进一步扩展以及新型多功能仿生系统的构建中发挥关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验