Suppr超能文献

气道重新开放期间肺泡上皮细胞损伤的基于图像的有限元建模

Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.

作者信息

Dailey H L, Ricles L M, Yalcin H C, Ghadiali S N

机构信息

Dept. of Biomedical Engineering, Lehigh University, Bethlehem, Pennsylvania, USA.

出版信息

J Appl Physiol (1985). 2009 Jan;106(1):221-32. doi: 10.1152/japplphysiol.90688.2008. Epub 2008 Nov 13.

Abstract

The acute respiratory distress syndrome (ARDS) is characterized by fluid accumulation in small pulmonary airways. The reopening of these fluid-filled airways involves the propagation of an air-liquid interface that exerts injurious hydrodynamic stresses on the epithelial cells (EpC) lining the airway walls. Previous experimental studies have demonstrated that these hydrodynamic stresses may cause rupture of the plasma membrane (i.e., cell necrosis) and have postulated that cell morphology plays a role in cell death. However, direct experimental measurement of stress and strain within the cell is intractable, and limited data are available on the mechanical response (i.e., deformation) of the epithelium during airway reopening. The goal of this study is to use image-based finite element models of cell deformation during airway reopening to investigate how cell morphology and mechanics influence the risk of cell injury/necrosis. Confocal microscopy images of EpC in subconfluent and confluent monolayers were used to generate morphologically accurate three-dimensional finite element models. Hydrodynamic stresses on the cells were calculated from boundary element solutions of bubble propagation in a fluid-filled parallel-plate flow channel. Results indicate that for equivalent cell mechanical properties and hydrodynamic load conditions, subconfluent cells develop higher membrane strains than confluent cells. Strain magnitudes were also found to decrease with increasing stiffness of the cell and membrane/cortex region but were most sensitive to changes in the cell's interior stiffness. These models may be useful in identifying pharmacological treatments that mitigate cell injury during airway reopening by altering specific biomechanical properties of the EpC.

摘要

急性呼吸窘迫综合征(ARDS)的特征是小气道内有液体蓄积。这些充满液体的气道重新开放涉及气液界面的扩展,该界面会对气道壁内衬的上皮细胞(EpC)施加有害的流体动力应力。先前的实验研究表明,这些流体动力应力可能导致质膜破裂(即细胞坏死),并推测细胞形态在细胞死亡中起作用。然而,直接实验测量细胞内的应力和应变是难以处理的,并且关于气道重新开放过程中上皮的机械反应(即变形)的数据有限。本研究的目的是使用基于图像的气道重新开放过程中细胞变形的有限元模型,来研究细胞形态和力学如何影响细胞损伤/坏死的风险。使用亚汇合和汇合单层中的EpC共聚焦显微镜图像来生成形态准确的三维有限元模型。根据流体填充平行板流动通道中气泡传播的边界元解计算细胞上的流体动力应力。结果表明,在等效的细胞力学性能和流体动力载荷条件下,亚汇合细胞比汇合细胞产生更高的膜应变。还发现应变大小随着细胞以及膜/皮质区域刚度的增加而减小,但对细胞内部刚度的变化最为敏感。这些模型可能有助于识别通过改变EpC的特定生物力学特性来减轻气道重新开放期间细胞损伤的药物治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验