Suppr超能文献

阵发性睡眠性血红蛋白尿症中的中性进化

Neutral evolution in paroxysmal nocturnal hemoglobinuria.

作者信息

Dingli David, Luzzatto Lucio, Pacheco Jorge M

机构信息

Division of Hematology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18496-500. doi: 10.1073/pnas.0802749105. Epub 2008 Nov 14.

Abstract

Paroxysmal nocturnal hemoglobinuria is an acquired hematopoietic stem cell (HSC) disorder characterized by the partial or complete deficiency of glycosyl-phosphatidylinositol (GPI)-linked membrane proteins, which leads to intravascular hemolysis. A loss of function mutation in the PIG-A gene, required for GPI biosynthesis, explains how the deficiency of many membrane proteins can result from a single genetic event. However, to date the mechanism of expansion of the GPI(-) clone has not been fully understood. Two hypotheses have been proposed: A selective advantage of GPI(-) cells because of a second mutation or a conditional growth advantage of GPI(-) cells in the presence of an immune attack on normal (GPI(+)) HSCs. Here, we explore a third possibility, whereby the PNH clone does not have a selective advantage. Simulations in a large virtual population accurately reproduce the known incidence of the disease; and the fit is optimized when the number of stem cells is decreased, reflecting a component of bone marrow failure in PNH. The model also accounts for the occurrence of spontaneous cure in PNH, consequent on clonal extinction. Thus, a clonal advantage may not be always necessary to explain clonal expansion in PNH.

摘要

阵发性睡眠性血红蛋白尿症是一种获得性造血干细胞(HSC)疾病,其特征是糖基磷脂酰肌醇(GPI)连接的膜蛋白部分或完全缺乏,从而导致血管内溶血。GPI生物合成所需的PIG-A基因功能丧失突变解释了许多膜蛋白的缺乏如何由单一基因事件导致。然而,迄今为止,GPI(-)克隆的扩增机制尚未完全了解。已经提出了两种假设:由于第二次突变,GPI(-)细胞具有选择性优势;或者在对正常(GPI(+))HSCs进行免疫攻击时,GPI(-)细胞具有条件生长优势。在这里,我们探讨了第三种可能性,即PNH克隆没有选择性优势。在大量虚拟群体中的模拟准确地再现了该疾病的已知发病率;当干细胞数量减少时拟合效果最佳,这反映了PNH中骨髓衰竭的一个因素。该模型还解释了PNH中因克隆灭绝而出现的自发缓解情况。因此,解释PNH中的克隆扩增可能并不总是需要克隆优势。

相似文献

1
Neutral evolution in paroxysmal nocturnal hemoglobinuria.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18496-500. doi: 10.1073/pnas.0802749105. Epub 2008 Nov 14.
3
Paroxysmal nocturnal hemoglobinuria: stem cells and clonality.
Hematology Am Soc Hematol Educ Program. 2008:111-5. doi: 10.1182/asheducation-2008.1.111.
4
Murine models of paroxysmal nocturnal hemoglobinuria.
Ann N Y Acad Sci. 2002 Jun;963:290-6. doi: 10.1111/j.1749-6632.2002.tb04120.x.
5
The Role of T Lymphocytes in the Pathogenesis of Paroxysmal Nocturnal Hemoglobinuria.
Front Immunol. 2021 Dec 24;12:777649. doi: 10.3389/fimmu.2021.777649. eCollection 2021.
7
Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria.
PLoS Comput Biol. 2018 Jun 18;14(6):e1006133. doi: 10.1371/journal.pcbi.1006133. eCollection 2018 Jun.
9
Molecular basis of paroxysmal nocturnal hemoglobinuria.
Stem Cells. 1996 Jul;14(4):396-411. doi: 10.1002/stem.140396.
10
The pathophysiology of paroxysmal nocturnal hemoglobinuria.
Exp Hematol. 2007 Apr;35(4):523-33. doi: 10.1016/j.exphem.2007.01.046.

引用本文的文献

1
Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment.
Medicina (Kaunas). 2023 Sep 6;59(9):1612. doi: 10.3390/medicina59091612.
2
The importance of terminal complement inhibition in paroxysmal nocturnal hemoglobinuria.
Ther Adv Hematol. 2022 May 30;13:20406207221091046. doi: 10.1177/20406207221091046. eCollection 2022.
3
Significance of paroxysmal nocturnal hemoglobinuria clone in immunosuppressive therapy for children with severe aplastic anemia.
Zhongguo Dang Dai Er Ke Za Zhi. 2022 Mar 15;24(3):303-308. doi: 10.7499/j.issn.1008-8830.2110109.
4
Insights Into the Emergence of Paroxysmal Nocturnal Hemoglobinuria.
Front Immunol. 2022 Jan 28;12:830172. doi: 10.3389/fimmu.2021.830172. eCollection 2021.
5
Is nature truly healing itself? Spontaneous remissions in Paroxysmal Nocturnal Hemoglobinuria.
Blood Cancer J. 2021 Nov 27;11(11):187. doi: 10.1038/s41408-021-00582-5.
6
Clonal hematopoiesis and bone marrow failure syndromes.
Best Pract Res Clin Haematol. 2021 Jun;34(2):101273. doi: 10.1016/j.beha.2021.101273. Epub 2021 May 25.
7
Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria.
PLoS Comput Biol. 2018 Jun 18;14(6):e1006133. doi: 10.1371/journal.pcbi.1006133. eCollection 2018 Jun.
8
Clonality in context: hematopoietic clones in their marrow environment.
Blood. 2017 Nov 30;130(22):2363-2372. doi: 10.1182/blood-2017-07-794362. Epub 2017 Oct 18.
9
Paroxysmal nocturnal haemoglobinuria.
Nat Rev Dis Primers. 2017 May 18;3:17028. doi: 10.1038/nrdp.2017.28.
10
Recent advances in the pathogenesis and treatment of paroxysmal nocturnal hemoglobinuria.
F1000Res. 2016 Feb 23;5. doi: 10.12688/f1000research.7288.1. eCollection 2016.

本文引用的文献

1
Paroxysmal nocturnal hemoglobinuria: natural history of disease subcategories.
Blood. 2008 Oct 15;112(8):3099-106. doi: 10.1182/blood-2008-01-133918. Epub 2008 Jun 5.
2
Multiple mutant clones in blood rarely coexist.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021915. doi: 10.1103/PhysRevE.77.021915. Epub 2008 Feb 27.
3
On the origin of multiple mutant clones in paroxysmal nocturnal hemoglobinuria.
Stem Cells. 2007 Dec;25(12):3081-4. doi: 10.1634/stemcells.2007-0427. Epub 2007 Sep 6.
4
Ontogenic growth of the haemopoietic stem cell pool in humans.
Proc Biol Sci. 2007 Oct 7;274(1624):2497-2501. doi: 10.1098/rspb.2007.0780.
5
Compartmental architecture and dynamics of hematopoiesis.
PLoS One. 2007 Apr 4;2(4):e345. doi: 10.1371/journal.pone.0000345.
6
Stochastic dynamics of hematopoietic tumor stem cells.
Cell Cycle. 2007 Feb 15;6(4):461-6. doi: 10.4161/cc.6.4.3853. Epub 2007 Feb 17.
8
Allometric scaling of the active hematopoietic stem cell pool across mammals.
PLoS One. 2006 Dec 20;1(1):e2. doi: 10.1371/journal.pone.0000002.
10
Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH).
Blood. 2006 Dec 15;108(13):4232-6. doi: 10.1182/blood-2006-05-025148. Epub 2006 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验