De Leenheer Patrick, Pilyugin Sergei S
Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.
Math Med Biol. 2008 Dec;25(4):285-322. doi: 10.1093/imammb/dqn023. Epub 2008 Nov 17.
We consider within-host virus models with n >or= 2 strains and allow mutation between the strains. If there is no mutation, a Lyapunov function establishes global stability of the steady state corresponding to the fittest strain. For small perturbations, this steady state persists, perhaps with small concentrations of some or all other strains, depending on the connectivity of the graph describing all possible mutations. Moreover, using a perturbation result due to Smith & Waltman (1999), we show that this steady state also preserves global stability.
我们考虑具有n≥2个毒株的宿主体内病毒模型,并允许毒株之间发生突变。如果没有突变,一个李雅普诺夫函数可建立对应于最适应毒株的稳态的全局稳定性。对于小扰动,该稳态持续存在,或许会有一些或所有其他毒株的低浓度存在,这取决于描述所有可能突变的图的连通性。此外,利用史密斯和沃尔特曼(1999年)给出的一个扰动结果,我们证明该稳态也保持全局稳定性。