Korobeinikov Andrei
Laboratory of Nonlinear Science and Computation, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
Math Med Biol. 2009 Sep;26(3):225-39. doi: 10.1093/imammb/dqp006. Epub 2009 Mar 18.
We consider two models for the spread of an infection with a free-living infective stage, where parasite reproduction and virulence (parasite-induced mortality) depend on the parasite dose to which the host is exposed and are given by unspecified non-linear functions of the number of the free pathogen particles, and the incidence rate is non-linear. We study the impact of these non-linearities with the focus on the global properties of these models. We consider a very general form of the non-linearities: we assume that the virulence and the parasite reproduction rates are given by unspecified non-linear functions of the number of the free pathogen particles and that the incidence rate is an unspecified function of the number of susceptible hosts and free pathogen particles; all these functions are constrained by a few biologically feasible conditions. We construct Lyapunov functions that enable us to find biologically realistic conditions which are sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction number, this equilibrium state can be either positive, where parasite endemically persists, or infection free.
我们考虑两种具有自由生活感染阶段的感染传播模型,其中寄生虫繁殖和毒力(寄生虫诱导的死亡率)取决于宿主暴露的寄生虫剂量,并由游离病原体颗粒数量的未指定非线性函数给出,且发病率是非线性的。我们研究这些非线性的影响,重点关注这些模型的全局性质。我们考虑一种非常一般形式的非线性:我们假设毒力和寄生虫繁殖率由游离病原体颗粒数量的未指定非线性函数给出,且发病率是易感宿主数量和游离病原体颗粒数量的未指定函数;所有这些函数都受一些生物学上可行的条件约束。我们构造李雅普诺夫函数,这使我们能够找到足以确保全局渐近稳定平衡态存在唯一性的生物学现实条件。根据基本繁殖数的值,这个平衡态可以是正的,即寄生虫地方流行持续存在,或者是无感染的。