Suppr超能文献

一种针对脑肿瘤的18F-FET-PET所证明的生物适应性剂量递增方法。

A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors.

作者信息

Rickhey Mark, Koelbl Oliver, Eilles Christoph, Bogner Ludwig

机构信息

Department of Radiation Oncology, University Hospital Regensburg, Regensburg, Germany.

出版信息

Strahlenther Onkol. 2008 Oct;184(10):536-42. doi: 10.1007/s00066-008-1883-6. Epub 2008 Oct 1.

Abstract

PURPOSE

To demonstrate the feasibility of a biologically adapted dose-escalation approach to brain tumors.

MATERIAL AND METHODS

Due to the specific accumulation of fluoroethyltyrosine (FET) in brain tumors, (18)F-FET-PET imaging is used to derive a voxel-by-voxel dose distribution. Although the kinetics of (18)F-FET are not completely understood, the authors regard regions with high tracer uptake as vital and aggressive tumor and use a linear dose-escalation function between SUV (standard uptake value) 3 and SUV 5. The resulting dose distribution is then planned using the inverse Monte Carlo treatment- planning system IKO. In a theoretical study, the dose range is clinically adapted from 1.8 Gy to 2.68 Gy per fraction (with a total of 30 fractions). In a second study, the maximum dose of the model is increased step by step from 2.5 Gy to 3.4 Gy to investigate whether a significant dose escalation to tracer-accumulating subvolumes is possible without affecting the shell-shaped organ at risk (OAR). For all dose-escalation levels the dose difference Delta D of each voxel inside the target volume is calculated and the mean dose difference Delta D and their standard deviation sigma Delta D are determined. The dose to the OAR is evaluated by the dose values D OAR 50% and D OAR 5%, which are the dose values not exceeded by 50% and 5% of the volume, respectively.

RESULTS

The inhomogeneous dose prescription is achieved with high accuracy (Delta D < 0.03 +/- 0.3 Gy/fraction). The maximum dose can be increased remarkably, without increasing the dose to the OAR (standard deviation of D OAR 50% < 0.02 Gy/fraction and of D OAR 5% < 0.05 Gy/fraction).

CONCLUSION

Assuming that regions with high tracer uptake can be interpreted as target for radiotherapy, (18)F-FET-PET-based "dose painting by numbers" applied to brain tumors is a feasible approach. The dose, and therefore potentially the chance of tumor control, can be enhanced. The proposed model can easily be transferred to other tracers and tumor entities.

摘要

目的

证明生物适应性剂量递增方法用于脑肿瘤治疗的可行性。

材料与方法

由于氟乙基酪氨酸(FET)在脑肿瘤中的特异性积聚,利用(18)F-FET-PET成像得出逐体素剂量分布。尽管(18)F-FET的动力学尚未完全明确,但作者将示踪剂摄取高的区域视为重要且侵袭性强的肿瘤,并在SUV(标准摄取值)3至SUV 5之间使用线性剂量递增函数。然后使用逆蒙特卡罗治疗计划系统IKO对所得剂量分布进行规划。在一项理论研究中,临床适用的剂量范围为每分次1.8 Gy至2.68 Gy(共30分次)。在第二项研究中,将模型的最大剂量从2.5 Gy逐步增加至3.4 Gy,以研究在不影响壳状危及器官(OAR)的情况下,是否有可能对示踪剂积聚的子体积进行显著的剂量递增。对于所有剂量递增水平,计算靶区内每个体素的剂量差异ΔD,并确定平均剂量差异ΔD及其标准差σΔD。通过剂量值D OAR 50%和D OAR 5%评估OAR的剂量,这两个剂量值分别是不超过50%和5%体积的剂量值。

结果

以高精度实现了非均匀剂量处方(ΔD < 0.03 ± 0.3 Gy/分次)。最大剂量可显著增加,而不增加OAR的剂量(D OAR 50%的标准差 < 0.02 Gy/分次,D OAR 5%的标准差 < 0.05 Gy/分次)。

结论

假设示踪剂摄取高的区域可被解释为放射治疗的靶区,应用于脑肿瘤的基于(18)F-FET-PET的“数字式剂量描绘”是一种可行的方法。可以提高剂量,从而可能增加肿瘤控制的机会。所提出的模型可轻松应用于其他示踪剂和肿瘤类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验