Grönlund Eric, Almhagen Erik, Johansson Silvia, Traneus Erik, Ahnesjö Anders
Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Section of Medical Physics, Mälar Hospital, Eskilstuna, Sweden.
Phys Imaging Radiat Oncol. 2019 Dec 9;12:56-62. doi: 10.1016/j.phro.2019.11.004. eCollection 2019 Oct.
Radiotherapy with dose painting by numbers (DPBN) needs another approach than conventional margins to ensure a geometrically robust dose coverage for the tumor. This study presents a method to optimize DPBN plans that as opposed to achieve a robust dose distribution instead robustly maximize the tumor control probability (TCP) for patients diagnosed with head and neck cancer.
Volumetric-modulated arc therapy (VMAT) plans were optimized with a robust TCP maximizing objective for different dose constraints to the primary clinical target volume (CTVT) for a set of 20 patients. These plans were optimized with minimax optimization together with dose-responses driven by standardized uptake values (SUV) from F-fluorodeoxyglucose positron emission tomography (FDG-PET). The robustness in TCP was evaluated through sampling treatment scenarios with isocenter displacements.
The average increase in TCP with DPBN compared to a homogeneous dose treatment ranged between 3 and 20 percentage points (p.p.) which depended on the different dose constraints for the CTVT. The median deviation in TCP increase was below 1p.p. for all sampled treatment scenarios versus the nominal plans. The standard deviation of SUV multiplied by the CTVT volume were found to correlate with the TCP gain with ≥ 0.9.
Minimax optimization of DPBN plans yield, based on the presented TCP modelling, a robust increase of the TCP compared to homogeneous dose treatments for head and neck cancers. The greatest TCP gains were found for patients with large and SUV heterogeneous tumors, which may give guidance for patient selection in prospective trials.
数字描绘剂量放疗(DPBN)需要一种不同于传统边界的方法,以确保肿瘤获得几何上稳健的剂量覆盖。本研究提出了一种优化DPBN计划的方法,该方法与实现稳健的剂量分布不同,而是稳健地最大化被诊断为头颈癌患者的肿瘤控制概率(TCP)。
对20例患者的一组计划,采用稳健的TCP最大化目标,针对不同的主要临床靶区(CTVT)剂量约束,对容积调强弧形放疗(VMAT)计划进行优化。这些计划通过极小极大优化以及由F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)的标准化摄取值(SUV)驱动的剂量反应进行优化。通过对等中心位移的治疗场景进行采样来评估TCP的稳健性。
与均匀剂量治疗相比,DPBN的TCP平均增加幅度在3至20个百分点(p.p.)之间,这取决于CTVT的不同剂量约束。与标称计划相比,所有采样治疗场景下TCP增加的中位数偏差均低于1p.p.。发现SUV的标准差乘以CTVT体积与TCP增益相关,相关系数≥0.9。
基于所提出的TCP模型,DPBN计划的极小极大优化与头颈癌的均匀剂量治疗相比,可使TCP稳健增加。对于肿瘤体积大且SUV异质性高的患者,TCP增加最大,这可为前瞻性试验中的患者选择提供指导。