Suppr超能文献

肌酸合成:大鼠体内外胍乙酸和肌酸的肝脏代谢

Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo.

作者信息

da Silva Robin P, Nissim Itzhak, Brosnan Margaret E, Brosnan John T

机构信息

Dept. of Biochemistry, Memorial Univ. of Newfoundland, St. John's, NL, Canada A1B3X9.

出版信息

Am J Physiol Endocrinol Metab. 2009 Feb;296(2):E256-61. doi: 10.1152/ajpendo.90547.2008. Epub 2008 Nov 18.

Abstract

Since creatinine excretion reflects a continuous loss of creatine and creatine phosphate, there is a need for creatine replacement, from the diet and/or by de novo synthesis. Creatine synthesis requires three amino acids, methionine, glycine, and arginine, and two enzymes, l-arginine:glycine amidinotransferase (AGAT), which produces guanidinoacetate acid (GAA), and guanidinoacetate methyltransferase (GAMT), which methylates GAA to produce creatine. In the rat, high activities of AGAT are found in the kidney, whereas high activities of GAMT occur in the liver. Rat hepatocytes readily convert GAA to creatine; this synthesis is stimulated by the addition of methionine, which increases cellular S-adenosylmethionine concentrations. These same hepatocytes are unable to produce creatine from methionine, arginine, and glycine. (15)N from (15)NH(4)Cl is readily incorporated into urea but not into creatine. Hepatic uptake of GAA is evident in vivo by livers of rats fed a creatine-free diet but not when rats were fed a creatine-supplemented diet. Rats fed the creatine-supplemented diet had greatly decreased renal AGAT activity and greatly decreased plasma [GAA] but no decrease in hepatic GAMT or in the capacity of hepatocytes to produce creatine from GAA. These studies indicate that hepatocytes are incapable of the entire synthesis of creatine but are capable of producing it from GAA. They also illustrate the interplay between the dietary provision of creatine and its de novo synthesis and point to the crucial role of renal AGAT expression in regulating creatine synthesis in the rat.

摘要

由于肌酐排泄反映了肌酸和磷酸肌酸的持续流失,因此需要从饮食中补充肌酸和/或通过从头合成来补充。肌酸合成需要三种氨基酸,即蛋氨酸、甘氨酸和精氨酸,以及两种酶,即L-精氨酸:甘氨酸脒基转移酶(AGAT),它产生胍基乙酸(GAA),和胍基乙酸甲基转移酶(GAMT),它将GAA甲基化以产生肌酸。在大鼠中,肾脏中AGAT的活性较高,而肝脏中GAMT的活性较高。大鼠肝细胞很容易将GAA转化为肌酸;添加蛋氨酸可刺激这种合成,蛋氨酸可增加细胞内S-腺苷甲硫氨酸的浓度。这些相同的肝细胞无法从蛋氨酸、精氨酸和甘氨酸中产生肌酸。来自(15)NH(4)Cl的(15)N很容易掺入尿素中,但不会掺入肌酸中。在给大鼠喂食无肌酸饮食时,肝脏对GAA的摄取在体内很明显,但在给大鼠喂食补充肌酸的饮食时则不明显。喂食补充肌酸饮食的大鼠肾脏AGAT活性大大降低,血浆[GAA]大大降低,但肝脏GAMT或肝细胞从GAA产生肌酸的能力没有降低。这些研究表明,肝细胞无法完全合成肌酸,但能够从GAA产生肌酸。它们还说明了饮食中肌酸供应与其从头合成之间的相互作用,并指出了肾脏AGAT表达在调节大鼠肌酸合成中的关键作用。

相似文献

3
Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo.肌酸合成:大鼠和人类肾脏在体内产生胍基乙酸。
Am J Physiol Renal Physiol. 2007 Dec;293(6):F1799-804. doi: 10.1152/ajprenal.00356.2007. Epub 2007 Oct 10.
8
Creatine biosynthesis and transport by the term human placenta.足月人胎盘的肌酸生物合成与转运
Placenta. 2017 Apr;52:86-93. doi: 10.1016/j.placenta.2017.02.020. Epub 2017 Feb 24.

引用本文的文献

3
Creatine monohydrate supplementation for older adults and clinical populations.一水肌酸对老年人及临床人群的补充作用。
J Int Soc Sports Nutr. 2025 Sep;22(sup1):2534130. doi: 10.1080/15502783.2025.2534130. Epub 2025 Jul 17.

本文引用的文献

2
Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo.肌酸合成:大鼠和人类肾脏在体内产生胍基乙酸。
Am J Physiol Renal Physiol. 2007 Dec;293(6):F1799-804. doi: 10.1152/ajprenal.00356.2007. Epub 2007 Oct 10.
7
Renal arginine metabolism.肾脏精氨酸代谢
J Nutr. 2004 Oct;134(10 Suppl):2791S-2795S; discussion 2796S-2797S. doi: 10.1093/jn/134.10.2791S.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验