Suppr超能文献

The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes.

作者信息

Ursic D, Culbertson M R

机构信息

Laboratory of Molecular Biology, University of Wisconsin, Madison 53706.

出版信息

Mol Cell Biol. 1991 May;11(5):2629-40. doi: 10.1128/mcb.11.5.2629-2640.1991.

Abstract

A Saccharomyces cerevisiae homolog to Drosophila melanogaster and mouse Tcp-1 encoding tailless complex polypeptide 1 (TCP1) has been identified, sequenced, and mapped. The mouse t complex has been under scrutiny for six decades because of its effects on embryogenesis and sperm differentiation and function. TCP1 is an essential gene in yeast cells and is located on chromosome 4R, linked to pet14. The TCP1-encoded proteins in yeast, Drosophila, and mouse cells share between 61 and 72% amino acid sequence identities, suggesting a primordial function for the TCP1 gene product. To assess function, we constructed a cold-impaired recessive mutation (tcp1-1) in the yeast gene. Cells carrying the tcp1-1 mutation grew linearly rather than exponentially at the restrictive temperature of 15 degrees C with a generation time of approximately 32 h in minimal medium. Both multinucleate and anucleate cells accumulated with time, suggesting that the linear growth kinetics may be explained by the generation of anucleate buds incapable of further cell division. In addition, the multinucleate and anucleate cells contained morphologically abnormal structures detected by anti-alpha-tubulin antibodies. The kinetics of appearance of these abnormalities suggest that they are a direct consequence of loss of function of the TCP1 protein and not a delayed, indirect consequence of cell death. We also observed that strains carrying tcp1-1 were hypersensitive to antimitotic compounds. Taken together, these observations imply that the TCP1 protein affects microtubule-mediated processes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/839a/360032/63b7e05437b8/molcellb00139-0309-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验