Guallar Victor, Lu Changyuan, Borrelli Kenneth, Egawa Tsuyoshi, Yeh Syun-Ru
Catalan Institution for Research and Advanced Studies, Life Science Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain.
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461.
J Biol Chem. 2009 Jan 30;284(5):3106-3116. doi: 10.1074/jbc.M806183200. Epub 2008 Nov 18.
Resonance Raman studies show that the heme-bound CO in trHbO, a truncated-II hemoglobin from Mycobacterium tuberculosis, is exposed to an environment with a positive electrostatic potential. The mutation of Trp(G8), an absolutely conserved residue in group II and III truncated hemoglobins, to Phe introduces two new Fe-CO conformers, both of which exhibit reduced electrostatic potentials. Computer simulations reveal that the structural perturbation is a result of the increased flexibility of the Tyr(CD1) and Leu(E11) side chains due to the reduction of the size of the G8 residue. Laser flash photolysis studies show that the G8 mutation induces 1) the presence of two new geminate recombination phases, one with a rate faster than the time resolution of our instrument and the other with a rate 13-fold slower than that of the wild type protein, and 2) the reduction of the total geminate recombination yield from 86 to 62% and the increase in the bimolecular recombination rate by a factor of 530. Computer simulations uncover that the photodissociated ligand migrates between three distal temporary docking sites before it subsequently rebinds to the heme iron or ultimately escapes into the solvent via a hydrophobic tunnel. The calculated energy profiles associated with the ligand migration processes are in good agreement with the experimental observations. The results highlight the importance of the Trp(G8) in regulating ligand migration in trHbO, underscoring its pivotal role in the structural and functional properties of the group II and III truncated hemoglobins.
共振拉曼研究表明,来自结核分枝杆菌的截短-II型血红蛋白trHbO中与血红素结合的一氧化碳暴露于具有正静电势的环境中。在II组和III组截短血红蛋白中绝对保守的残基色氨酸(Trp(G8))突变为苯丙氨酸会引入两种新的Fe-CO构象异构体,二者的静电势均降低。计算机模拟显示,结构扰动是由于G8残基尺寸减小导致酪氨酸(Tyr(CD1))和亮氨酸(Leu(E11))侧链灵活性增加的结果。激光闪光光解研究表明,G8突变导致:1)出现两个新的双分子复合相,一个的速率快于我们仪器的时间分辨率,另一个的速率比野生型蛋白慢13倍;2)双分子复合总产率从86%降至62%,双分子复合速率增加530倍。计算机模拟发现,光解离的配体在三个远端临时停靠位点之间迁移,然后再与血红素铁重新结合或最终通过疏水通道逸出到溶剂中。计算得到的与配体迁移过程相关的能量分布与实验观察结果高度吻合。这些结果突出了色氨酸(Trp(G8))在调节trHbO中配体迁移方面的重要性,强调了其在II组和III组截短血红蛋白的结构和功能特性中的关键作用。