Suppr超能文献

GIT1介导血管内皮生长因子诱导内皮细胞中足体的形成:磷脂酶Cγ的关键作用。

GIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma.

作者信息

Wang Jing, Taba Yoji, Pang Jinjiang, Yin Guoyong, Yan Chen, Berk Bradford C

机构信息

Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2009 Feb;29(2):202-8. doi: 10.1161/ATVBAHA.108.174391. Epub 2008 Nov 20.

Abstract

OBJECTIVE

We and others showed that tyrosine kinase receptors (TKRs) such as the epidermal growth factor receptor stimulate G protein-coupled receptor (GPCR) kinase-interacting protein 1 (GIT1) phosphorylation via c-Src, which is required for phospholipase C-gamma (PLCgamma) activation, indicating that GIT1 participates in TKR signaling. VEGF is the most important TKR in endothelial cells (ECs); essential for cell survival, migration, and angiogenesis. Podosomes, actin-rich structures, were found to contribute to EC migration, tissue invasion, and matrix remodeling, suggesting a role for podosomes in angiogenesis. Because GIT1 is a substrate of c-Src, and podosome formation is c-Src dependent, we hypothesized that GIT1 plays an important role in VEGF-induced EC podosome formation and cell migration.

METHODS AND RESULTS

Exposure of ECs to VEGF for 30 minutes stimulated GIT1 colocalization with podosomes. Depletion of GIT1 by siRNA significantly decreased VEGF-induced podosome formation. A key role for PLCgamma was suggested by several experiments. Double staining PLCgamma and actin showed colocalization of PLCgamma with podosomes. Podosome formation was dramatically reduced by PLCgamma inhibitor U73122, Src inhibitor PP2, or expression of dominant negative small GTPases. Therefore, VEGF-induced EC podosome formation is dependent on Src, GIT1, PLCgamma, and small GTPases. In addition, matrix metalloprotease 2 (MMP2) and MT-MMP1 were detected at sites of VEGF-induced podosomes. Depletion of GIT1 by siRNA also significantly inhibited VEGF-induced MMP2 activation and extracellular matrix (ECM) degradation. Therefore, GIT1 mediates VEGF-induced matrix metalloproteinase (MMP) activation and ECM degradation by regulating podosome formation. Finally, depletion of GIT1 by siRNA significantly decreased VEGF-induced cell migration.

CONCLUSIONS

These data indicate that GIT1 is an essential mediator for VEGF-induced EC podosome formation and cell migration via PLCgamma.

摘要

目的

我们和其他研究表明,酪氨酸激酶受体(TKRs),如表皮生长因子受体,可通过c-Src刺激G蛋白偶联受体(GPCR)激酶相互作用蛋白1(GIT1)磷酸化,这是磷脂酶C-γ(PLCγ)激活所必需的,表明GIT1参与TKR信号传导。血管内皮生长因子(VEGF)是内皮细胞(ECs)中最重要的TKR;对细胞存活、迁移和血管生成至关重要。富含肌动蛋白的结构——足体,被发现有助于EC迁移、组织侵袭和基质重塑,提示足体在血管生成中发挥作用。由于GIT1是c-Src的底物,且足体形成依赖于c-Src,我们推测GIT1在VEGF诱导的EC足体形成和细胞迁移中起重要作用。

方法与结果

将ECs暴露于VEGF 30分钟可刺激GIT1与足体共定位。通过小干扰RNA(siRNA)耗尽GIT1可显著减少VEGF诱导的足体形成。多项实验表明PLCγ起关键作用。PLCγ与肌动蛋白的双重染色显示PLCγ与足体共定位。PLCγ抑制剂U73122、Src抑制剂PP2或显性负性小GTP酶的表达可显著减少足体形成。因此,VEGF诱导的EC足体形成依赖于Src、GIT1、PLCγ和小GTP酶。此外,在VEGF诱导的足体部位检测到基质金属蛋白酶2(MMP2)和MT-MMP1。通过siRNA耗尽GIT1也显著抑制VEGF诱导的MMP2激活和细胞外基质(ECM)降解。因此,GIT1通过调节足体形成介导VEGF诱导的基质金属蛋白酶(MMP)激活和ECM降解。最后,通过siRNA耗尽GIT1可显著减少VEGF诱导的细胞迁移。

结论

这些数据表明,GIT1是VEGF通过PLCγ诱导EC足体形成和细胞迁移的重要介质。

相似文献

引用本文的文献

3
Actin cytoskeleton in angiogenesis.血管生成中的肌动蛋白细胞骨架。
Biol Open. 2022 Dec 15;11(12). doi: 10.1242/bio.058899. Epub 2022 Nov 29.
5
Small GTPases all over invadosomes.小 GTPases 遍布入侵小体。
Small GTPases. 2021 Sep-Nov;12(5-6):429-439. doi: 10.1080/21541248.2021.1877081. Epub 2021 Jan 25.
7
Early epigenetic changes of Alzheimer's disease in the human hippocampus.阿尔茨海默病患者海马体的早期表观遗传改变。
Epigenetics. 2020 Oct;15(10):1083-1092. doi: 10.1080/15592294.2020.1748917. Epub 2020 Apr 7.

本文引用的文献

5
Molecular mechanisms of pulmonary vascular development.肺血管发育的分子机制
Pediatr Dev Pathol. 2007 Jan-Feb;10(1):1-17. doi: 10.2350/06-06-0122.1.
9
Phosphorylation of serine 709 in GIT1 regulates protrusive activity in cells.GIT1中丝氨酸709的磷酸化调节细胞中的突出活动。
Biochem Biophys Res Commun. 2006 Aug 11;346(4):1284-8. doi: 10.1016/j.bbrc.2006.06.036. Epub 2006 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验