Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuermann R, Nieuwenhuys G J, Prokscha T, Morenzoni E
Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland.
Nat Mater. 2009 Feb;8(2):109-14. doi: 10.1038/nmat2333. Epub 2008 Nov 23.
Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance.
利用自旋自由度的电子设备在未来技术方面拥有独特的前景。这些“自旋电子”设备的性能在很大程度上依赖于自旋极化在不同层和界面之间的有效转移。这个复杂的转移过程取决于各个材料的特性,并且最重要的是,还取决于不同材料之间界面的结构和电子特性以及实际设备中常见的缺陷。对于相对较新的有机自旋电子学领域而言,了解这些因素尤为重要,因为在该领域严重缺乏合适的实验技术,这些技术能够提供有关实际设备掩埋层内电荷载流子自旋极化的深度分辨信息。在这里,我们提出了一种用于测量有机自旋阀中电流注入电子自旋极化的新深度分辨技术,并发现测量的自旋扩散长度的温度依赖性与器件磁阻相关。