Suppr超能文献

通过线性回归预测饲料成分和鱼类物种的可消化能含量。

Prediction of digestible energy content across feed ingredients and fish species by linear regression.

机构信息

University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728, 38925 Vodnany, Czech Republic.

出版信息

Fish Physiol Biochem. 2009 Nov;35(4):551-65. doi: 10.1007/s10695-008-9286-2. Epub 2008 Nov 25.

Abstract

In an attempt to develop predictive relationships, apparent digestible energy (ADE) content (n = 361) as biological dependent variable and dietary contents of crude protein (CP), lipid, ash and gross energy (GE) as independent variables, obtained in 40 studies with 65 different feed ingredients and evaluated with 26 fish species, were subjected to linear correlation and multiple linear regression analysis. With dietary CP and GE contents identified as significant predictors, only 58% of the variation in ADE content could be explained. No improvement in accuracy of regression equations was gained by classification of values according to either feed ingredient (animal proteins, plant proteins, cereals) or fish species (water type, water temperature, feed habit). An R (2)-value of 0.4570 and mean prediction error (MPE) of 0.2085 between predicted and observed ADE values from eight independent studies (n = 37) illustrated the inability of the derived regression equation to accurately predict ADE contents of feed ingredients. Inclusion of dietary crude fibre and nitrogen-free extract (NFE) contents as independent variables did not improve the accuracy of prediction equations. The inadequacy of the use of linear regression to predict DE content from dietary composition across feed ingredients and fish species with high accuracy is discussed.

摘要

为了建立预测关系,将 361 种不同饲料原料的表观可消化能(ADE)含量(n = 361)作为生物学因变量,粗蛋白(CP)、脂类、灰分和总能(GE)的饲粮含量作为自变量,采用 40 项研究 26 种鱼类进行线性相关和多元线性回归分析。饲粮 CP 和 GE 含量是显著的预测因子,但仅能解释 ADE 含量 58%的变异。根据饲料原料(动物蛋白、植物蛋白、谷物)或鱼类(水类型、水温、摄食习性)对数值进行分类,对回归方程的准确性没有改善。从 8 项独立研究(n = 37)中得出的回归方程预测值与实测 ADE 值之间的 R²值为 0.4570,平均预测误差(MPE)为 0.2085,表明回归方程无法准确预测饲料原料的 ADE 含量。将饲粮粗纤维和无氮浸出物(NFE)含量作为自变量纳入,也没有提高预测方程的准确性。本文讨论了线性回归在预测不同饲料原料和鱼类中 DE 含量时,因准确性较差而不适用的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验