Pinedo Cristina, Wang Chieh-Mei, Pradier Jean-Marc, Dalmais Bérengère, Choquer Mathias, Le Pêcheur Pascal, Morgant Guillaume, Collado Isidro G, Cane David E, Viaud Muriel
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Spain.
ACS Chem Biol. 2008 Dec 19;3(12):791-801. doi: 10.1021/cb800225v.
The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster.Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation.Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8beta-ol.
灰葡萄孢菌是一种在经济上具有重要意义的灰霉病的病原体,这种病害会影响200多种具有观赏价值和农业重要性的植物物种。灰葡萄孢菌是一种死体营养型植物病原体,它会分泌非特异性植物毒素,包括倍半萜葡萄孢菌素和聚酮化合物葡萄孢酸。先前已鉴定的BcBOT1基因周围区域现已被确定为葡萄孢菌素生物合成基因簇。通过定量逆转录PCR显示,包括BcBOT1和BcBOT2在内的五个基因通过钙调神经磷酸酶信号通路共同调控。编码假定倍半萜环化酶的BcBOT2基因失活后,葡萄孢菌素的生物合成被消除,而通过反式互补可以恢复。BcBOT2基因失活还导致葡萄孢酸的过量产生,且这种过量产生表现出菌株依赖性。重组BcBOT2蛋白将法尼基二磷酸转化为葡萄孢菌素生物合成途径的前体倍半萜,即三环醇前硅叶perfolan - 8β -醇。