Asclepios Research Project, INRIA Sophia Antipolis, 2004 route des Lucioles BP 93, 06 902 Sophia Antipolis, France; LENITEM, IRCCS San Giovanni di Dio Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy.
Asclepios Research Project, INRIA Sophia Antipolis, 2004 route des Lucioles BP 93, 06 902 Sophia Antipolis, France.
Neuroimage. 2013 Nov 1;81:470-483. doi: 10.1016/j.neuroimage.2013.04.114. Epub 2013 May 16.
Non-linear registration is a key instrument for computational anatomy to study the morphology of organs and tissues. However, in order to be an effective instrument for the clinical practice, registration algorithms must be computationally efficient, accurate and most importantly robust to the multiple biases affecting medical images. In this work we propose a fast and robust registration framework based on the log-Demons diffeomorphic registration algorithm. The transformation is parameterized by stationary velocity fields (SVFs), and the similarity metric implements a symmetric local correlation coefficient (LCC). Moreover, we show how the SVF setting provides a stable and consistent numerical scheme for the computation of the Jacobian determinant and the flux of the deformation across the boundaries of a given region. Thus, it provides a robust evaluation of spatial changes. We tested the LCC-Demons in the inter-subject registration setting, by comparing with state-of-the-art registration algorithms on public available datasets, and in the intra-subject longitudinal registration problem, for the statistically powered measurements of the longitudinal atrophy in Alzheimer's disease. Experimental results show that LCC-Demons is a generic, flexible, efficient and robust algorithm for the accurate non-linear registration of images, which can find several applications in the field of medical imaging. Without any additional optimization, it solves equally well intra & inter-subject registration problems, and compares favorably to state-of-the-art methods.
非线性配准是计算解剖学研究器官和组织形态的关键工具。然而,为了成为临床实践的有效工具,配准算法必须在计算上有效、准确,最重要的是对影响医学图像的多种偏差具有鲁棒性。在这项工作中,我们提出了一种基于对数-Demons 可变形配准算法的快速鲁棒配准框架。变换由固定速度场(SVF)参数化,相似性度量实现对称局部相关系数(LCC)。此外,我们展示了 SVF 设置如何为给定区域边界上的雅可比行列式和变形通量的计算提供稳定一致的数值方案。因此,它提供了对空间变化的稳健评估。我们通过在公共可用数据集上与最先进的配准算法进行比较,在受试者间配准设置中测试了 LCC-Demons,并在受试者内纵向配准问题中,对阿尔茨海默病的纵向萎缩进行了统计学上有力的测量。实验结果表明,LCC-Demons 是一种通用、灵活、高效和鲁棒的图像精确非线性配准算法,它可以在医学成像领域找到多种应用。无需任何额外的优化,它同样可以解决受试者内和受试者间的配准问题,并优于最先进的方法。