Zhou Yinchi, Lee Ho Hin, Tang Yucheng, Yu Xin, Yang Qi, Kim Michael E, Remedios Lucas W, Bao Shunxing, Spraggins Jeffrey M, Huo Yuankai, Landman Bennett A
Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States.
NVIDIA, Santa Clara, California, United States.
J Med Imaging (Bellingham). 2025 Mar;12(2):024006. doi: 10.1117/1.JMI.12.2.024006. Epub 2025 Apr 17.
Diverse population demographics can lead to substantial variation in the human anatomy. Therefore, standard anatomical atlases are needed for interpreting organ-specific analyses. Among abdominal organs, the pancreas exhibits notable variability in volumetric morphology, shape, and appearance, complicating the generalization of population-wide features. Understanding the common features of a healthy pancreas is crucial for identifying biomarkers and diagnosing pancreatic diseases.
We propose a high-resolution CT atlas framework optimized for the healthy pancreas. We introduce a deep-learning-based preprocessing technique to extract abdominal ROIs and leverage a hierarchical registration pipeline to align pancreatic anatomy across populations. Briefly, DEEDS affine and non-rigid registration techniques are employed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas, multi-phase contrast CT scans of 443 subjects (aged 15 to 50 years, with no reported history of pancreatic disease) were processed.
The two-stage DEEDS affine and non-rigid registration outperforms other state-of-the-art tools, achieving the highest scores for pancreas label transfer across all phases (non-contrast: 0.497, arterial: 0.505, portal venous: 0.494, delayed: 0.497). External evaluation with 100 portal venous scans and 13 labeled abdominal organs shows a mean Dice score of 0.504. The low variance between the pancreases of registered subjects and the obtained pancreas atlas further illustrates the generalizability of the proposed method.
We introduce a high-resolution pancreas atlas framework to generalize healthy biomarkers across populations with multi-contrast abdominal CT. The atlases and the associated pancreas organ labels are publicly available through the Human Biomolecular Atlas Program (HuBMAP).
不同的人口统计学特征可能导致人体解剖结构存在显著差异。因此,需要标准的解剖图谱来解释特定器官的分析结果。在腹部器官中,胰腺在体积形态、形状和外观上表现出显著的变异性,这使得在全人群中概括其特征变得复杂。了解健康胰腺的共同特征对于识别生物标志物和诊断胰腺疾病至关重要。
我们提出了一个针对健康胰腺进行优化的高分辨率CT图谱框架。我们引入了一种基于深度学习的预处理技术来提取腹部感兴趣区域,并利用分层配准管道来对齐不同人群的胰腺解剖结构。简而言之,采用DEEDS仿射和非刚性配准技术将患者腹部容积转移到固定的高分辨率图谱模板上。为了生成和评估胰腺图谱,我们对443名受试者(年龄在15至50岁之间,无胰腺疾病报告史)的多期对比CT扫描进行了处理。
两阶段的DEEDS仿射和非刚性配准优于其他现有技术工具,在所有阶段的胰腺标签转移中获得了最高分(平扫:0.497,动脉期:0.505,门静脉期:0.494,延迟期:0.497)。对100次门静脉扫描和13个标记的腹部器官进行的外部评估显示,平均Dice评分为0.504。已配准受试者的胰腺与所获得的胰腺图谱之间的低方差进一步说明了所提出方法的通用性。
我们引入了一个高分辨率胰腺图谱框架,以通过多对比腹部CT在不同人群中概括健康生物标志物。这些图谱和相关的胰腺器官标签可通过人类生物分子图谱计划(HuBMAP)公开获取。