Guo Liuxiao, Xu Zhenyuan
School of Science, Jiangnan University, Wuxi 214122, China.
Chaos. 2008 Sep;18(3):033134. doi: 10.1063/1.2978180.
This paper studies the existence of Hölder continuity of generalized synchronization (GS). Based on the modified system approach, GS is classified into three types: equilibrium GS, periodic GS, and C-GS, when the modified system has an asymptotically stable equilibrium, asymptotically stable limit cycles, and chaotic attractors, respectively. The existence of the first two types of Hölder continuous GS inertial manifolds are strictly theoretically proved.
本文研究广义同步(GS)的Hölder连续性的存在性。基于修正系统方法,当修正系统分别具有渐近稳定平衡点、渐近稳定极限环和混沌吸引子时,广义同步被分为三种类型:平衡点广义同步、周期广义同步和C类广义同步。严格从理论上证明了前两种类型的Hölder连续广义同步惯性流形的存在性。