Suppr超能文献

通过使用(18)O标记的“通用”参考样品实现的大规模多重定量发现蛋白质组学。

Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.

作者信息

Qian Wei-Jun, Liu Tao, Petyuk Vladislav A, Gritsenko Marina A, Petritis Brianne O, Polpitiya Ashoka D, Kaushal Amit, Xiao Wenzhong, Finnerty Celeste C, Jeschke Marc G, Jaitly Navdeep, Monroe Matthew E, Moore Ronald J, Moldawer Lyle L, Davis Ronald W, Tompkins Ronald G, Herndon David N, Camp David G, Smith Richard D

机构信息

Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

出版信息

J Proteome Res. 2009 Jan;8(1):290-9. doi: 10.1021/pr800467r.

Abstract

The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope (18)O-labeled "universal" reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the (18)O-labeled "universal" reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on (16)O/(18)O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free (16)O-MS intensity data extracted from the same data sets. The results showed that the (18)O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the (18)O-reference for accurate quantitation makes this strategy especially attractive when a large number of biological samples are involved in a study where label-free quantitation may be problematic, for example, due to issues associated with instrument platform robustness. The approach will also be useful for more effectively discovering subtle abundance changes in broad systems biology studies.

摘要

对大量生物样本或患者样本中的蛋白质丰度进行定量比较,是蛋白质组学面临的一项重大挑战,也是蛋白质组学发现应用中需要解决的问题。在此,我们描述了一种策略,该策略将稳定同位素(18)O标记的“通用”参考样本作为一套全面的内标,用于对大量样本集进行定量分析。作为混合样本,将(18)O标记的“通用”参考样本加入到每个单独处理的未标记生物样本中,然后根据将每个未标记样本与相同参考样本进行比较的(16)O/(18)O同位素肽对丰度比,对肽/蛋白质丰度进行定量。由于每个生物样本除用作内标的标记参考样本外均未标记,因此该方法还允许在样本集中同时直接应用无标记定量方法和标记方法(即双重定量)。通过将该方法应用于一组来自严重烧伤患者的18份血浆样本,证明了其在大规模定量蛋白质组学中的有效性。当结合免疫亲和去除和基于半胱氨酸肽富集的分级分离以及高分辨率液相色谱-质谱测量时,共可靠鉴定和定量了312种血浆蛋白,每种蛋白至少有两个独特肽段。将同位素标记数据与从同一数据集中提取的无标记(16)O-质谱强度数据直接进行比较。结果表明,与无标记方法相比,基于(18)O参考的标记方法具有明显更好的定量精度。两种方法确定的相对丰度差异也显示出很强的相关性,说明了两种定量方法的互补性。当大量生物样本参与一项研究时,例如由于与仪器平台稳健性相关的问题导致无标记定量可能存在问题时,加入(18)O参考进行准确定量的简单性使得该策略特别具有吸引力。该方法对于在广泛的系统生物学研究中更有效地发现细微的丰度变化也将是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e13e/2752204/8e42516eb267/nihms113145f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验