Suppr超能文献

高阶谱在糖尿病视网膜病变分期识别中的应用。

Application of higher order spectra for the identification of diabetes retinopathy stages.

作者信息

Acharya U Rajendra, Chua Chua Kuang, Ng E Y K, Yu Wenwei, Chee Caroline

机构信息

Department of ECE, Ngee Ann Polytechnic, Singapore, Singapore.

出版信息

J Med Syst. 2008 Dec;32(6):481-8. doi: 10.1007/s10916-008-9154-8.

Abstract

Diabetic retinopathy (DR) is a condition where the retina is damaged due to fluid leaking from the blood vessels into the retina. In extreme cases, the patient will become blind. Therefore, early detection of diabetic retinopathy is crucial to prevent blindness. Various image processing techniques have been used to identify the different stages of diabetes retinopathy. The application of non-linear features of the higher-order spectra (HOS) was found to be efficient as it is more suitable for the detection of shapes. The aim of this work is to automatically identify the normal, mild DR, moderate DR, severe DR and prolific DR. The parameters are extracted from the raw images using the HOS techniques and fed to the support vector machine (SVM) classifier. This paper presents classification of five kinds of eye classes using SVM classifier. Our protocol uses, 300 subjects consisting of five different kinds of eye disease conditions. We demonstrate a sensitivity of 82% for the classifier with the specificity of 88%.

摘要

糖尿病性视网膜病变(DR)是一种由于血管中的液体渗漏到视网膜而导致视网膜受损的病症。在极端情况下,患者会失明。因此,早期检测糖尿病性视网膜病变对于预防失明至关重要。各种图像处理技术已被用于识别糖尿病视网膜病变的不同阶段。高阶谱(HOS)的非线性特征的应用被发现是有效的,因为它更适合于形状检测。这项工作的目的是自动识别正常、轻度DR、中度DR、重度DR和增殖性DR。使用HOS技术从原始图像中提取参数,并将其输入支持向量机(SVM)分类器。本文提出了使用SVM分类器对五种眼部类别进行分类。我们的方案使用了300名受试者,他们患有五种不同的眼部疾病。我们证明该分类器的灵敏度为82%,特异性为88%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验