Suppr超能文献

神经网络的贝叶斯正则化

Bayesian regularization of neural networks.

作者信息

Burden Frank, Winkler Dave

机构信息

Scimetrics, Carlton North, Victoria, Australia.

出版信息

Methods Mol Biol. 2008;458:25-44. doi: 10.1007/978-1-60327-101-1_3.

Abstract

Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.

摘要

贝叶斯正则化人工神经网络(BRANNs)比标准反向传播网络更稳健,并且可以减少或消除冗长的交叉验证需求。贝叶斯正则化是一个数学过程,它以岭回归的方式将非线性回归转换为一个“适定”的统计问题。BRANNs的优点在于模型稳健,并且像反向传播等常规回归方法中按O(N2) 规模进行的验证过程不再必要。这些网络为定量构效关系(QSAR)建模中出现的许多问题提供了解决方案,比如模型选择、模型稳健性、验证集选择、验证工作量大小以及网络架构优化。它们难以过度训练,因为证据程序提供了一个用于停止训练的客观贝叶斯准则。它们也难以过度拟合,因为BRANN会计算并基于一些有效的网络参数或权重进行训练,有效地关闭那些不相关的参数。这个有效数量通常比标准全连接反向传播神经网络中的权重数量小得多。输入变量的自动相关性确定(ARD)可以与BRANNs一起使用,这使得网络能够“估计”每个输入的重要性。ARD方法确保在建模中忽略不相关或高度相关的指标,并显示出哪些是用于对活性数据建模的最重要变量。本章概述了定义BRANN方法的方程以及生成BRANN - QSAR模型的流程图。文中展示了在多个数据集上使用BRANNs的一些结果,并与其他线性和非线性模型进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验