Burden F R, Winkler D A
CSIRO Division of Molecular Science, Private Bag 10, Clayton South MDC, Clayton, Victoria 3169, Australia.
J Med Chem. 1999 Aug 12;42(16):3183-7. doi: 10.1021/jm980697n.
We describe the use of Bayesian regularized artificial neural networks (BRANNs) in the development of QSAR models. These networks have the potential to solve a number of problems which arise in QSAR modeling such as: choice of model; robustness of model; choice of validation set; size of validation effort; and optimization of network architecture. The application of the methods to QSAR of compounds active at the benzodiazepine and muscarinic receptors is illustrated.
我们描述了贝叶斯正则化人工神经网络(BRANNs)在定量构效关系(QSAR)模型开发中的应用。这些网络有潜力解决QSAR建模中出现的一些问题,如:模型选择;模型的稳健性;验证集的选择;验证工作的规模;以及网络架构的优化。文中举例说明了这些方法在苯二氮卓受体和毒蕈碱受体活性化合物的QSAR中的应用。