Suppr超能文献

用于快速增量学习的具有实值输入的演化逻辑网络。

Evolving logic networks with real-valued inputs for fast incremental learning.

作者信息

Park Myoung Soo, Choi Jin Young

机构信息

School of Electrical Engineering and Computer Science, Automation and Systems Research Institute, Seoul National University, Seoul 151-744, Korea.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):254-67. doi: 10.1109/TSMCB.2008.2005483. Epub 2008 Dec 9.

Abstract

In this paper, we present a neural network structure and a fast incremental learning algorithm using this network. The proposed network structure, named Evolving Logic Networks for Real-valued inputs (ELN-R), is a data structure for storing and using the knowledge. A distinctive feature of ELN-R is that the previously learned knowledge stored in ELN-R can be used as a kind of building block in constructing new knowledge. Using this feature, the proposed learning algorithm can enhance the stability and plasticity at the same time, and as a result, the fast incremental learning can be realized. The performance of the proposed scheme is shown by a theoretical analysis and an experimental study on two benchmark problems.

摘要

在本文中,我们提出了一种神经网络结构以及使用该网络的快速增量学习算法。所提出的网络结构名为实值输入的进化逻辑网络(ELN-R),是一种用于存储和使用知识的数据结构。ELN-R的一个显著特点是,存储在ELN-R中的先前学习到的知识可以用作构建新知识的一种构建块。利用这一特性,所提出的学习算法可以同时提高稳定性和可塑性,从而实现快速增量学习。通过对两个基准问题的理论分析和实验研究,展示了所提方案的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验