Heyes Derren J, Sakuma Michiyo, de Visser Sam P, Scrutton Nigel S
Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
J Biol Chem. 2009 Feb 6;284(6):3762-7. doi: 10.1074/jbc.M808548200. Epub 2008 Dec 10.
In chlorophyll biosynthesis, the light-activated enzyme protochlorophyllide oxidoreductase catalyzes trans addition of hydrogen across the C-17-C-18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). This unique light-driven reaction plays a key role in the assembly of the photosynthetic apparatus, but despite its biological importance, the mechanism of light-activated catalysis is unknown. In this study, we show that Pchlide reduction occurs by dynamically coupled nuclear quantum tunneling of a hydride anion followed by a proton on the microsecond time scale in the Pchlide excited and ground states, respectively. We demonstrate the need for fast dynamic searches to form degenerate "tunneling-ready" configurations within the lifetime of the Pchlide excited state from which hydride transfer occurs. Moreover, we have found a breakpoint at -27 degrees C in the temperature dependence of the hydride transfer rate, which suggests that motions/vibrations that are important for promoting light-activated hydride tunneling are quenched below -27 degrees C. We observed no such breakpoint for the proton-tunneling reaction, indicating a reliance on different promoting modes for this reaction in the enzyme-substrate complex. Our studies indicate that the overall photoreduction of Pchlide is endothermic and that rapid dynamic searches are required to form distinct tunneling-ready configurations within the lifetime of the photoexcited state. Consequently, we have established the first important link between photochemical and nuclear quantum tunneling reactions, linked to protein dynamics, in a biologically significant system.
在叶绿素生物合成过程中,光激活酶原叶绿素酸酯氧化还原酶催化氢跨叶绿素前体原叶绿素酸酯(Pchlide)的C-17-C-18双键进行反式加成。这种独特的光驱动反应在光合装置的组装中起关键作用,但尽管其具有生物学重要性,光激活催化的机制仍不清楚。在本研究中,我们表明,在Pchlide的激发态和基态中,Pchlide的还原分别通过氢负离子的动态耦合核量子隧穿以及随后在微秒时间尺度上的质子隧穿发生。我们证明了需要快速动态搜索,以便在发生氢化物转移的Pchlide激发态寿命内形成简并的“隧穿就绪”构型。此外,我们在氢化物转移速率的温度依赖性中发现了一个-27℃的断点,这表明对促进光激活氢化物隧穿很重要的运动/振动在-27℃以下被淬灭。我们没有观察到质子隧穿反应的这种断点,这表明在酶-底物复合物中该反应依赖于不同的促进模式。我们的研究表明,Pchlide的整体光还原是吸热的,并且需要快速动态搜索以在光激发态的寿命内形成不同的隧穿就绪构型。因此,我们在一个具有生物学意义的系统中建立了光化学与核量子隧穿反应之间的第一个重要联系,该联系与蛋白质动力学相关。