Suppr超能文献

肌酸激酶系统的发育重组将线粒体能量代谢与干细胞心脏发生整合在一起。

Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis.

作者信息

Chung Susan, Dzeja Petras P, Faustino Randolph S, Terzic Andre

机构信息

Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology and Experimental Therapeutics and Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Ann N Y Acad Sci. 2008 Dec;1147:254-63. doi: 10.1196/annals.1427.004.

Abstract

Differentiation of pluripotent low-energy requiring stem cells into the high-energy expenditure cardiac lineage requires coordination of genomic programming and energetic system maturation. Here, in a murine embryonic stem cell cardiac differentiation model, emergence of electrical and beating activity in cardiomyocytes developing within embryoid bodies was coupled with the establishment of the mitochondrial network and expansion of the creatine kinase (CK) phosphotransfer system. Stem cell cardiogenesis was characterized by increased total CK activity, an isoform shift manifested by amplified muscle CK-M mRNA levels and protein content, and the appearance of cardiac-specific CK-MB dimers. Treatment of differentiating stem cells with BMP2, a cardiogenic growth factor, promoted CK activity. CK-M clustered around developing myofibrils, sarcolemma, and the perinuclear compartment, whereas CK-B was tightly associated with myofibrillar alpha-actinin, forming wire-like structures extending from the nuclear compartment to the sarcolemma. Developmentally enhanced phosphotransfer enzyme-anchoring protein FHL2 coalesced the myofibrillar CK metabolic signaling circuit, providing an energetic continuum between mitochondria and the nascent contractile machinery. Thus, the evolving CK-catalyzed phosphotransfer network integrates mitochondrial energetics with cardiogenic programming, securing the emergence of energy-consuming cardiac functions in differentiating embryonic stem cells.

摘要

多能低能量需求干细胞向高能量消耗的心脏谱系分化需要基因组编程与能量系统成熟的协调。在此,在小鼠胚胎干细胞心脏分化模型中,胚状体中发育的心肌细胞出现电活动和搏动活动与线粒体网络的建立以及肌酸激酶(CK)磷酸转移系统的扩展相关联。干细胞心脏发生的特征是总CK活性增加、由肌肉CK-M mRNA水平和蛋白质含量增加所表现的同工型转变以及心脏特异性CK-MB二聚体的出现。用心脏发生生长因子BMP2处理分化的干细胞可促进CK活性。CK-M聚集在发育中的肌原纤维、肌膜和核周区周围,而CK-B与肌原纤维α-肌动蛋白紧密相关,形成从核区延伸至肌膜的丝状结构。发育过程中增强的磷酸转移酶锚定蛋白FHL2使肌原纤维CK代谢信号回路聚合,在线粒体和新生收缩机制之间提供了能量连续体。因此,不断演变的CK催化的磷酸转移网络将线粒体能量学与心脏发生编程整合在一起,确保分化的胚胎干细胞中耗能心脏功能的出现。

相似文献

4
Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice.
Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):13-27. doi: 10.1023/b:mcbi.0000009856.23646.38.
5
Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10156-61. doi: 10.1073/pnas.152259999. Epub 2002 Jul 15.
7
Heterogeneous cellular expression of creatine kinase isoenzyme during normal rat heart development.
Mol Cell Biochem. 1998 Jan;178(1-2):87-94. doi: 10.1023/a:1006805120251.
8
Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo.
Mol Cell Biochem. 2000 May;208(1-2):119-28. doi: 10.1023/a:1007002323492.
9
Compartmentation of creatine kinases during perinatal development of mammalian heart.
Mol Cell Biochem. 1994 Apr-May;133-134:277-86. doi: 10.1007/BF01267960.

引用本文的文献

3
Mitochondrial Permeability Transition in Stem Cells, Development, and Disease.
Adv Exp Med Biol. 2023;1409:1-22. doi: 10.1007/5584_2022_720.
4
Gene Regulation and Cellular Metabolism: An Essential Partnership.
Trends Genet. 2021 Apr;37(4):389-400. doi: 10.1016/j.tig.2020.09.018. Epub 2020 Oct 19.
6
[Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019 May 25;48(1):65-74. doi: 10.3785/j.issn.1008-9292.2019.02.11.
8
Mitochondria in pluripotent stem cells: stemness regulators and disease targets.
Curr Opin Genet Dev. 2016 Jun;38:1-7. doi: 10.1016/j.gde.2016.02.001. Epub 2016 Mar 5.
10
Metabolic determinants of embryonic development and stem cell fate.
Reprod Fertil Dev. 2014 Dec;27(1):82-8. doi: 10.1071/RD14383.

本文引用的文献

1
Genomic chart guiding embryonic stem cell cardiopoiesis.
Genome Biol. 2008 Jan 9;9(1):R6. doi: 10.1186/gb-2008-9-1-r6.
3
Mitochondrial DNA replication during differentiation of murine embryonic stem cells.
J Cell Sci. 2007 Nov 15;120(Pt 22):4025-34. doi: 10.1242/jcs.016972. Epub 2007 Oct 30.
5
Pharmacoproteomics: advancing the efficacy and safety of regenerative therapeutics.
Clin Pharmacol Ther. 2007 Sep;82(3):316-9. doi: 10.1038/sj.clpt.6100310. Epub 2007 Aug 1.
6
Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6223-8. doi: 10.1073/pnas.0700690104. Epub 2007 Mar 23.
7
Untangling the signalling wires.
Nat Cell Biol. 2007 Mar;9(3):247-9. doi: 10.1038/ncb0307-247.
8
Cardiopoietic programming of embryonic stem cells for tumor-free heart repair.
J Exp Med. 2007 Feb 19;204(2):405-20. doi: 10.1084/jem.20061916. Epub 2007 Feb 5.
9
Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery.
Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S68-76. doi: 10.1038/ncpcardio0763.
10
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.
Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1(Suppl 1):S60-7. doi: 10.1038/ncpcardio0766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验