Suppr超能文献

在预测复杂疾病的药物疗效方面,多单核苷酸多态性(SNP)药物基因组分类器优于单SNP模型。

Multi-SNP pharmacogenomic classifier is superior to single-SNP models for predicting drug outcome in complex diseases.

作者信息

Petrovski Slavé, Szoeke Cassandra E, Sheffield Leslie J, D'souza Wendyl, Huggins Richard M, O'brien Terence J

机构信息

Departments of Medicine, Surgery and Neurology, BioGrid Australia.

出版信息

Pharmacogenet Genomics. 2009 Feb;19(2):147-52. doi: 10.1097/FPC.0b013e32831d1dfa.

Abstract

OBJECTIVES

Most pharmacogenomic studies have attempted to identify single nucleotide polymorphism (SNP) markers that are predictive for treatment outcomes. It is, however, unlikely in complex diseases such as epilepsy, affecting heterogeneous populations, that a single SNP will adequately explain treatment outcomes. This study reports an approach to develop a multi-SNP model to classify treatment outcomes for such a disease and compares this with single-SNP models.

METHODS

A prospectively collected dataset of outcomes in 115 patients newly treated for epilepsy, with genotyping for 4041 SNPs in 279 candidate genes, was used for the model development. A cross-validation-based methodology identified SNPs most influential in predicting seizure control after 1 year of drug treatment and then incorporated these into a multi-SNP classification model; using the k-Nearest Neighbour (kNN) supervised learning approach. The classifier was cross-validated to determine its effectiveness in predicting treatment outcome in the developmental cohort and then in two independent validation cohorts. In each, the classification by the multi-SNP model was compared with that of models using the individual SNPs alone.

RESULTS

Five SNPs were selected for the multi-SNP model. Cross-validation showed that the multi-SNP model had a predictive accuracy of 83.5% in the developmental cohort and sensitivity and positive predictive values above 80% in both the independent validation cohorts. In all cases, the multi-SNP model classified the treatment outcomes better than those using any individual SNPs alone.

CONCLUSION

The results show that a classifier using multiple SNPs can predict treatment outcome more reliably than single-SNP models. This multi-SNP classifier should be tested on data from newly diagnosed epilepsy populations to determine its broad clinical validity. Our method to developing a multi-SNP classifier could be applied to pharmacogenomic studies of other complex diseases.

摘要

目的

大多数药物基因组学研究试图识别可预测治疗结果的单核苷酸多态性(SNP)标记。然而,在癫痫等影响异质人群的复杂疾病中,单个SNP不太可能充分解释治疗结果。本研究报告了一种开发多SNP模型以对这类疾病的治疗结果进行分类的方法,并将其与单SNP模型进行比较。

方法

一个前瞻性收集的115例新接受癫痫治疗患者的结果数据集,对279个候选基因中的4041个SNP进行了基因分型,用于模型开发。一种基于交叉验证的方法确定了在药物治疗1年后预测癫痫发作控制最有影响的SNP,然后将这些SNP纳入多SNP分类模型;采用k近邻(kNN)监督学习方法。对分类器进行交叉验证,以确定其在发育队列以及两个独立验证队列中预测治疗结果的有效性。在每个队列中,将多SNP模型的分类与仅使用单个SNP的模型的分类进行比较。

结果

为多SNP模型选择了5个SNP。交叉验证表明,多SNP模型在发育队列中的预测准确率为83.5%,在两个独立验证队列中的敏感性和阳性预测值均高于80%。在所有情况下,多SNP模型对治疗结果的分类都比仅使用任何单个SNP的模型更好。

结论

结果表明,使用多个SNP的分类器比单SNP模型能更可靠地预测治疗结果。这种多SNP分类器应在新诊断癫痫人群的数据上进行测试,以确定其广泛的临床有效性。我们开发多SNP分类器的方法可应用于其他复杂疾病的药物基因组学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验