Suppr超能文献

人工智能:癫痫领域的基础与突破性应用

Artificial Intelligence: Fundamentals and Breakthrough Applications in Epilepsy.

作者信息

Kerr Wesley, Acosta Sandra, Kwan Patrick, Worrell Gregory, Mikati Mohamad A

机构信息

Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

Department of Biomedical Engineering, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

出版信息

Epilepsy Curr. 2024 Mar 31:15357597241238526. doi: 10.1177/15357597241238526.

Abstract

Artificial intelligence, machine learning, and deep learning are increasingly being used in all medical fields including for epilepsy research and clinical care. Already there have been resultant cutting-edge applications in both the clinical and research arenas of epileptology. Because there is a need to disseminate knowledge about these approaches, how to use them, their advantages, and their potential limitations, the goal of the 2023 Merritt-Putnam Symposium and of this synopsis review of that symposium has been to present the background and state of the art and then to draw conclusions on current and future applications of these approaches through the following: (1) Initially provide an explanation of the fundamental principles of artificial intelligence, machine learning, and deep learning. These are presented in the first section of this review by Dr Wesley Kerr. (2) Provide insights into their cutting-edge applications in screening for medications in neural organoids, in general, and for epilepsy in particular. These are presented by Dr Sandra Acosta. (3) Provide insights into how artificial intelligence approaches can predict clinical response to medication treatments. These are presented by Dr Patrick Kwan. (4) Finally, provide insights into the expanding applications to the detection and analysis of EEG signals in intensive care, epilepsy monitoring unit, and intracranial monitoring situations, as presented below by Dr Gregory Worrell. The expectation is that, in the coming decade and beyond, the increasing use of the above approaches will transform epilepsy research and care and supplement, but not replace, the diligent work of epilepsy clinicians and researchers.

摘要

人工智能、机器学习和深度学习在包括癫痫研究与临床护理在内的所有医学领域正得到越来越广泛的应用。在癫痫学的临床和研究领域已经出现了由此产生的前沿应用。由于有必要传播关于这些方法、其使用方式、优点及潜在局限性的知识,2023年梅里特 - 普特南研讨会以及本研讨会综述的目标是介绍背景和技术现状,然后通过以下方式就这些方法的当前和未来应用得出结论:(1)首先解释人工智能、机器学习和深度学习的基本原理。韦斯利·克尔博士在本综述的第一部分介绍了这些内容。(2)深入了解它们在一般神经类器官药物筛选,特别是癫痫药物筛选中的前沿应用。桑德拉·阿科斯塔博士介绍了这些内容。(3)深入了解人工智能方法如何预测药物治疗的临床反应。帕特里克·关博士介绍了这些内容。(4)最后,深入了解在重症监护、癫痫监测单元和颅内监测情况下脑电图信号检测与分析方面不断扩展的应用,如下由格雷戈里·沃雷尔博士介绍。预计在未来十年及以后,上述方法的更多使用将改变癫痫研究与护理,并补充但不会取代癫痫临床医生和研究人员的辛勤工作。

相似文献

2
Machine learning applications in epilepsy.机器学习在癫痫中的应用。
Epilepsia. 2019 Oct;60(10):2037-2047. doi: 10.1111/epi.16333. Epub 2019 Sep 3.
9
Idiopathic focal epilepsies: the "lost tribe".特发性局灶性癫痫:“失落的部落”。
Epileptic Disord. 2016 Sep 1;18(3):252-88. doi: 10.1684/epd.2016.0839.
10
Artificial Intelligence in Epilepsy.人工智能在癫痫中的应用。
Neurol India. 2021 May-Jun;69(3):560-566. doi: 10.4103/0028-3886.317233.

本文引用的文献

4
AI-enabled organoids: Construction, analysis, and application.人工智能驱动的类器官:构建、分析与应用。
Bioact Mater. 2023 Sep 16;31:525-548. doi: 10.1016/j.bioactmat.2023.09.005. eCollection 2024 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验