Data and Translational Sciences, UCB Biosciences GmbH, 40789 Monheim am Rhein, Germany.
Data and Translational Sciences, UCB Pharma, Slough SL1 3WE, UK.
Brain. 2021 Jul 28;144(6):1738-1750. doi: 10.1093/brain/awab108.
Accurate and individualized prediction of response to therapies is central to precision medicine. However, because of the generally complex and multifaceted nature of clinical drug response, realizing this vision is highly challenging, requiring integrating different data types from the same individual into one prediction model. We used the anti-epileptic drug brivaracetam as a case study and combine a hybrid data/knowledge-driven feature extraction with machine learning to systematically integrate clinical and genetic data from a clinical discovery dataset (n = 235 patients). We constructed a model that successfully predicts clinical drug response [area under the curve (AUC) = 0.76] and show that even with limited sample size, integrating high-dimensional genetics data with clinical data can inform drug response prediction. After further validation on data collected from an independently conducted clinical study (AUC = 0.75), we extensively explore our model to gain insights into the determinants of drug response, and identify various clinical and genetic characteristics predisposing to poor response. Finally, we assess the potential impact of our model on clinical trial design and demonstrate that, by enriching for probable responders, significant reductions in clinical study sizes may be achieved. To our knowledge, our model represents the first retrospectively validated machine learning model linking drug mechanism of action and the genetic, clinical and demographic background in epilepsy patients to clinical drug response. Hence, it provides a blueprint for how machine learning-based multimodal data integration can act as a driver in achieving the goals of precision medicine in fields such as neurology.
准确和个体化的治疗反应预测是精准医学的核心。然而,由于临床药物反应通常具有复杂和多方面的性质,实现这一愿景极具挑战性,需要将来自同一患者的不同数据类型整合到一个预测模型中。我们使用抗癫痫药物布瓦西坦作为案例研究,将混合数据/知识驱动的特征提取与机器学习相结合,从临床发现数据集(n=235 名患者)中系统地整合临床和遗传数据。我们构建了一个成功预测临床药物反应的模型(曲线下面积[AUC]=0.76),并表明即使样本量有限,将高维遗传学数据与临床数据整合也可以为药物反应预测提供信息。在对独立进行的临床研究中收集的数据(AUC=0.75)进行进一步验证后,我们广泛探索了我们的模型,以深入了解药物反应的决定因素,并确定了导致反应不佳的各种临床和遗传特征。最后,我们评估了我们的模型对临床试验设计的潜在影响,并证明通过富集可能的反应者,可以显著减少临床研究的规模。据我们所知,我们的模型代表了第一个回顾性验证的机器学习模型,该模型将药物作用机制与癫痫患者的遗传、临床和人口统计学背景联系起来,以预测临床药物反应。因此,它为基于机器学习的多模态数据集成如何成为神经科学等领域实现精准医学目标的驱动力提供了蓝图。