Iben I E, Stavola M, Macgregor R B, Zhang X Y, Friedman J M
Chemistry Department, New York University, New York 10003.
Biophys J. 1991 May;59(5):1040-9. doi: 10.1016/S0006-3495(91)82319-0.
A new spectroscopic technique is presented for obtaining infraredlike spectra of the binding sites of Ca2+ and other metals in biological macromolecules. The technique, based on the Ca(2+)-like binding properties of Gd3+, utilizes vibronic side bands (VSB) that appear in Gd3+ fluorescence. In the fluorescence spectrum of Gd3+, the separation in photon frequency between a VSB and its electronic origin at approximately 32,150 cm-1 (approximately 311 nm) is a direct measure of the vibrational frequency of a ligand coordinated to Gd3+ ion. As a consequence, the VSB are uncomplicated by molecular vibrations distant from the Gd3+ binding site. The vibrational spectra resulting from the VSB of Gd3+ coordinated to a Ca2+ binding protein, a phospholipid, and DNA are presented.