Bergh Magnus, Huldt Gösta, Tîmneanu Nicusor, Maia Filipe R N C, Hajdu Janos
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Q Rev Biophys. 2008 Aug-Nov;41(3-4):181-204. doi: 10.1017/S003358350800471X.
Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis of the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed. The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 1011-1012 photons microm-2 in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.
对活细胞进行详细的结构研究存在问题,因为现有的结构方法无法在不可重复的对象上实现高分辨率。用超短且极其明亮的X射线脉冲进行照射可以在极短时间内超越关键的损伤过程。这可用于在闪光衍射实验中将衍射信号扩展到尽可能高的分辨率。在此,我们使用带有辐射传输的非平衡粒子动力学等离子体代码,对非常强烈且非常短的X射线脉冲与活细胞的相互作用进行了分析。演化等离子体中的每个元素都由众多状态建模,以监测原子粒子数随脉冲长度、波长和注量的变化。该模型通过自洽求解速率方程来处理光电离、碰撞电离、俄歇衰变、复合和轫致辐射吸收,并通过离子声速描述流体动力学膨胀。结果表明,在衍射极限几何结构中,对于微米大小的细胞,在波长为0.75至1.5纳米、注量为10¹¹ - 10¹²光子·微米⁻²且脉冲持续时间小于10飞秒的情况下,可以达到亚纳米分辨率。在更高注量下使用更硬的X射线也可以实现亚纳米分辨率。我们讨论了在闪光衍射实验中获取关于对象深度信息的实验和计算策略。