Keenan Kevin G, Valero-Cuevas Francisco J
Division of Biokinesiology & Physical Therapy, University of Southern California, CA USA.
Biomed Signal Process Control. 2008 Apr;3(2):154-162. doi: 10.1016/j.bspc.2008.01.002.
Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the "true" average EMG amplitude calculated from a 28 s EMG trace (EMG(ref)) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMG(ref.) For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates.
研究人员和临床医生通常依靠干扰肌电图(EMG)来估计神经肌肉系统中的肌肉力量和指令信号(例如,幅度、时间和频率成分)。然而,干扰EMG固有的幅度抵消提出了关于如何优化这些估计的重要问题。例如,为了可靠地估计肌肉力量和指令信号,对EMG信号进行平均的时间段(时间窗口)应该多长?较短的时间段最为实用,并且有报道称通过高通滤波和白化处理,时间段有显著缩短。然而,鉴于这种处理会衰减感兴趣频率(<250Hz)处的功率,目前尚不清楚它是如何改善生理相关信息的提取的。我们研究了幅度抵消和高通滤波对在模拟恒定等长条件下准确估计从28秒EMG轨迹(EMG(ref))计算出的“真实”平均EMG幅度所需时间段的影响。模拟28秒表面EMG的运动单位模型的蒙特卡罗迭代在两种条件下产生了245次模拟:有和没有幅度抵消。对于每次模拟,我们计算了生成平均全波整流EMG幅度所需的时间段,该幅度稳定在EMG(ref)的5%以内。对于无抵消的EMG,所需的时间段很短(例如,<100毫秒)。对于更实际的干扰EMG(即抵消条件),在使用高于250Hz的高通滤波器截止频率后,时间段显著缩短,产生的时间段短到足以实用(即,<500毫秒)。我们得出结论,需要使用长时间段来准确估计EMG幅度可能是不可避免的幅度抵消的结果,这有助于阐明为什么高通滤波(>250Hz)能改善EMG估计。