Leonardy Simone, Bulyha Iryna, Søgaard-Andersen Lotte
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str., 35043 Marburg, Germany.
Mol Biosyst. 2008 Oct;4(10):1009-14. doi: 10.1039/b806640j. Epub 2008 Jul 25.
Cells of the bacterium Myxococcus xanthus organize into two types of patterns depending on their nutritional status, i.e. in the presence of nutrients cells form spreading colonies and in the absence of nutrients cells form fruiting bodies. Formation of both patterns depends on directed cell movements, which, in turn, depend on regulation of motility. M. xanthus cells harbor two motility machines, type IV pili and the A-engine, which act synergistically to generate motive force in the same direction. Periodically, the individual cells reverse their direction of movement. During a reversal the two motility machines switch polarity to generate force in the opposite direction. Recent evidence shows that at the molecular level, reversals involve pole-to-pole oscillations of motility proteins. Between reversals, these proteins localize to the cell poles to stimulate motility and in parallel with a reversal they relocalize between the poles. For two proteins, FrzS and RomR, which are part of the type IV pili and A-engine, respectively, it was directly demonstrated that they oscillate independently of each other but in synchrony, thus, providing evidence that the two motility machines switch polarity independently but synchronously. Protein oscillations are regulated and synchronized by the Frz chemosensory signal transduction system. The correct polarity of the motility systems is likely established by the MglA protein, which is a member of the Ras/Rac/Rho superfamily of small GTPases. In this scenario, MglA establishes the correct polarity of the two motility machines and the Frz-induced synchronized polarity switching maintains the correct polarity of the two motility machines.
黄色粘球菌的细胞会根据其营养状态组织形成两种类型的模式,即在有营养物质时细胞形成扩散菌落,而在没有营养物质时细胞形成子实体。这两种模式的形成都依赖于定向细胞运动,而定向细胞运动又依赖于运动性的调节。黄色粘球菌细胞拥有两种运动机器,IV型菌毛和A发动机,它们协同作用以在同一方向产生动力。单个细胞会周期性地反转其运动方向。在反转过程中,这两种运动机器会切换极性以在相反方向产生力。最近的证据表明在分子水平上,反转涉及运动蛋白的极到极振荡。在两次反转之间,这些蛋白定位于细胞极以刺激运动性,并且在反转过程中它们会在两极之间重新定位。对于分别作为IV型菌毛和A发动机一部分的两种蛋白FrzS和RomR,直接证明它们彼此独立但同步振荡,因此,提供了两种运动机器独立但同步切换极性的证据。蛋白振荡由Frz化学感应信号转导系统调节和同步。运动系统的正确极性可能由MglA蛋白建立,MglA蛋白是小GTP酶的Ras/Rac/Rho超家族的成员。在这种情况下,MglA建立两种运动机器的正确极性,并且Frz诱导的同步极性切换维持两种运动机器的正确极性。