Suppr超能文献

哺乳动物视杆光感受器在黑暗和光照条件下的ATP消耗

ATP consumption by mammalian rod photoreceptors in darkness and in light.

作者信息

Okawa Haruhisa, Sampath Alapakkam P, Laughlin Simon B, Fain Gordon L

机构信息

Neuroscience Graduate Program, Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089, USA.

出版信息

Curr Biol. 2008 Dec 23;18(24):1917-21. doi: 10.1016/j.cub.2008.10.029. Epub 2008 Dec 11.

Abstract

Why do vertebrates use rods and cones that hyperpolarize, when in insect eyes a single depolarizing photoreceptor can function at all light levels? We answer this question at least in part with a comprehensive assessment of ATP consumption for mammalian rods from voltages and currents and recently published physiological and biochemical data. In darkness, rods consume 10(8) ATP s(-1), about the same as Drosophila photoreceptors. Ion fluxes associated with phototransduction and synaptic transmission dominate; as in CNS, the contribution of enzymes of the second-messenger cascade is surprisingly small. Suppression of rod responses in daylight closes light-gated channels and reduces total energy consumption by >75%, but in Drosophila light opens channels and increases consumption 5-fold. Rods therefore provide an energy-efficient mechanism not present in rhabdomeric photoreceptors. Rods are metabolically less "costly" than cones, because cones do not saturate in bright light and use more ATP s(-1) for transducin activation and rhodopsin phosphorylation. This helps to explain why the vertebrate retina is duplex, and why some diurnal animals like primates have a small number of cones, concentrated in a region of high acuity.

摘要

当昆虫眼睛中的单个去极化光感受器在所有光照水平下都能发挥作用时,为什么脊椎动物使用超极化的视杆细胞和视锥细胞呢?我们至少部分地通过根据电压和电流以及最近发表的生理和生化数据对哺乳动物视杆细胞的ATP消耗进行全面评估来回答这个问题。在黑暗中,视杆细胞消耗10⁸个ATP·s⁻¹,与果蝇光感受器消耗的量大致相同。与光转导和突触传递相关的离子通量占主导;与中枢神经系统一样,第二信使级联反应的酶的贡献小得出奇。在白天对视杆细胞反应的抑制会关闭光门控通道,并使总能量消耗降低超过75%,但在果蝇中,光会打开通道并使消耗增加5倍。因此,视杆细胞提供了一种横纹肌光感受器中不存在的节能机制。视杆细胞在代谢上比视锥细胞“成本”更低,因为视锥细胞在强光下不会饱和,并且在转导素激活和视紫红质磷酸化过程中消耗更多的ATP·s⁻¹。这有助于解释为什么脊椎动物的视网膜是双功能的,以及为什么一些昼行性动物,如灵长类动物,视锥细胞数量较少,且集中在高敏锐度区域。

相似文献

1
ATP consumption by mammalian rod photoreceptors in darkness and in light.
Curr Biol. 2008 Dec 23;18(24):1917-21. doi: 10.1016/j.cub.2008.10.029. Epub 2008 Dec 11.
2
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11.
3
Elevated energy requirement of cone photoreceptors.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19599-19603. doi: 10.1073/pnas.2001776117. Epub 2020 Jul 27.
6
Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
J Biol Chem. 2015 Apr 10;290(15):9399-411. doi: 10.1074/jbc.M114.634543. Epub 2015 Feb 20.
7
Robust cone-mediated signaling persists late into rod photoreceptor degeneration.
Elife. 2022 Aug 30;11:e80271. doi: 10.7554/eLife.80271.
8
Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
J Gen Physiol. 2006 Oct;128(4):473-85. doi: 10.1085/jgp.200609619.
9
Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
Sci Adv. 2017 Nov 8;3(11):eaao4709. doi: 10.1126/sciadv.aao4709. eCollection 2017 Nov.

引用本文的文献

1
Knock-In Mice Exhibit a Cone-Rod Dystrophy-Like Phenotype.
Cells. 2025 Jun 11;14(12):878. doi: 10.3390/cells14120878.
2
The Role of the Ca-activated Cl Conductance in the Membrane Potential and Light Response of Mouse Rods.
J Neurosci. 2025 May 28;45(22):e1920242025. doi: 10.1523/JNEUROSCI.1920-24.2025.
3
Advances and therapeutic opportunities in visual cycle modulation.
Prog Retin Eye Res. 2025 May;106:101360. doi: 10.1016/j.preteyeres.2025.101360. Epub 2025 Apr 23.
4
Retinal Pigment Epithelium Specific Metabolic Phenotypes Are Regulated by High-Mobility Group Protein N1.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):70. doi: 10.1167/iovs.66.4.70.
5
Prenatally derived macrophages support choroidal health and decline in age-related macular degeneration.
J Exp Med. 2025 Jul 7;222(7). doi: 10.1084/jem.20242007. Epub 2025 Apr 22.
7
Temporal Transformation of the Rod Single-Photon Response in the Retinal Circuitry.
Invest Ophthalmol Vis Sci. 2025 Feb 3;66(2):52. doi: 10.1167/iovs.66.2.52.
10
Genetically Encoded Metabolic Sensors to Study Retina Metabolism.
Adv Exp Med Biol. 2025;1468:465-469. doi: 10.1007/978-3-031-76550-6_76.

本文引用的文献

1
A role for GCAP2 in regulating the photoresponse. Guanylyl cyclase activation and rod electrophysiology in GUCA1B knock-out mice.
J Biol Chem. 2008 Oct 24;283(43):29135-43. doi: 10.1074/jbc.M804445200. Epub 2008 Aug 22.
2
Mouse cones require an arrestin for normal inactivation of phototransduction.
Neuron. 2008 Aug 14;59(3):462-74. doi: 10.1016/j.neuron.2008.06.011.
3
Rod and cone photoreceptors: molecular basis of the difference in their physiology.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Aug;150(4):369-77. doi: 10.1016/j.cbpa.2008.04.600. Epub 2008 Apr 26.
4
Energy limitation as a selective pressure on the evolution of sensory systems.
J Exp Biol. 2008 Jun;211(Pt 11):1792-804. doi: 10.1242/jeb.017574.
5
Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors.
J Neurosci. 2008 Feb 27;28(9):2064-74. doi: 10.1523/JNEUROSCI.2973-07.2008.
6
Fly photoreceptors demonstrate energy-information trade-offs in neural coding.
PLoS Biol. 2007 Apr;5(4):e116. doi: 10.1371/journal.pbio.0050116.
7
Transducin translocation in rods is triggered by saturation of the GTPase-activating complex.
J Neurosci. 2007 Jan 31;27(5):1151-60. doi: 10.1523/JNEUROSCI.5010-06.2007.
8
RGS expression rate-limits recovery of rod photoresponses.
Neuron. 2006 Aug 17;51(4):409-16. doi: 10.1016/j.neuron.2006.07.010.
10
Photoreceptor calcium channels: insight from night blindness.
Vis Neurosci. 2005 Sep-Oct;22(5):561-8. doi: 10.1017/S0952523805225038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验