Chhabra Mahendra, Prausnitz John M, Radke C J
Department of Chemical Engineering, University of California, Berkeley, California 94720, USA.
J Biomed Mater Res B Appl Biomater. 2009 Jul;90(1):202-9. doi: 10.1002/jbm.b.31274.
The rate of oxygen consumption is an important parameter to assess the physiology of the human cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment. Therefore, estimation of in vivo corneal oxygen-consumption rate is essential for gauging adequate oxygen supply to the cornea. Phosphorescence quenching of a dye coated on the posterior of a soft contact lens provides a powerful technique to measure tear-film oxygen tension (Harvitt and Bonanno, Invest Ophthalmol Vis Sci 1996;37:1026-1036; Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376). Unfortunately, previous work in establishing oxygen-consumption kinetics from transient postlens tear-film oxygen tensions relies on the simplistic assumption of a constant corneal-consumption rate. A more realistic model of corneal metabolism is needed to obtain reliable oxygen-consumption kinetics. Here, physiologically relevant nonlinear Monod kinetics is adopted for describing the local oxygen-consumption rate, thus avoiding aphysical negative oxygen tensions in the cornea. We incorporate Monod kinetics in an unsteady-state reactive-diffusion model for the cornea contact-lens system to determine tear-film oxygen tension as a function of time when changing from closed-eye to open-eye condition. The model was fit to available experimental data of in vivo human postlens tear-film oxygen tension to determine the corneal oxygen-consumption rate. Reliance on corneal oxygen diffusivity and solubility data obtained from rabbits is no longer requisite. Excellent agreement is obtained between the proposed model and experiment. We calculate the spatial-averaged in vivo human maximum corneal oxygen-consumption rate as Q(c)(max) = 1.05 x 10(-4) mL/(cm(3) s). The calculated Monod constant is K(m) = 2.2 mmHg.
氧消耗率是评估人角膜生理状态的一个重要参数。角膜中的氧代谢受隐形眼镜引起的缺氧、糖尿病等疾病、手术及药物治疗的影响。因此,估计体内角膜氧消耗率对于衡量角膜充足的氧气供应至关重要。涂覆在软性隐形眼镜后部的染料的磷光猝灭提供了一种测量泪膜氧张力的有力技术(Harvitt和Bonanno,《Invest Ophthalmol Vis Sci》1996年;37:1026 - 1036;Bonanno等人,《Invest Ophthalmol Vis Sci》2002年;43:371 - 376)。不幸的是,以往根据瞬态透镜后泪膜氧张力建立氧消耗动力学的工作依赖于角膜消耗率恒定这一简单假设。需要一个更符合生理实际的角膜代谢模型来获得可靠的氧消耗动力学。在此,采用生理相关的非线性莫诺德动力学来描述局部氧消耗率,从而避免角膜中出现不符合物理实际的负氧张力。我们将莫诺德动力学纳入角膜 - 隐形眼镜系统的非稳态反应扩散模型中,以确定从闭眼状态转变为睁眼状态时泪膜氧张力随时间的变化函数。该模型与现有的体内人透镜后泪膜氧张力实验数据拟合,以确定角膜氧消耗率。不再需要依赖从兔子获得的角膜氧扩散率和溶解度数据。所提出的模型与实验结果取得了极好的一致性。我们计算出体内人角膜最大氧消耗率的空间平均值为Q(c)(max) = 1.05×10^(-4) mL/(cm³·s)。计算得到的莫诺德常数为K(m) = 2.2 mmHg。