Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, 04510, Mexico.
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico.
J Biomed Mater Res B Appl Biomater. 2020 Jan;108(1):14-21. doi: 10.1002/jbm.b.34360. Epub 2019 Mar 20.
The purpose is to estimate the oxygen diffusion coefficient and the relaxation time of the cornea with respect to the oxygen tension at the cornea-tears interface. Both findings are discussed. From the experimental data provided by Bonanno et al., the oxygen tension measurements in vivo for human cornea-tears-contact lens (CL), the relaxation time of the cornea, and their oxygen diffusion coefficient were obtained by numerical calculation using the Monod-kinetic model. Our results, considering the relaxation time of the cornea, observe a different behavior. At the time less than 8 s, the oxygen diffusivity process is upper-diffusive, and for the relaxation time greater than 8 s, the oxygen diffusivity process is lower-diffusive. Both cases depend on the partial pressure of oxygen at the entrance of the cornea. The oxygen tension distribution in the cornea-tears interface is separated into two different zones: one for conventional hydrogels, which is located between 6 and 75 mmHg, with a relaxation time included between 8 and 19 s, and the other zone for silicone hydrogel CLs, which is located at high oxygen tension, between 95 and 140 mmHg, with a relaxation time in the interval of 1.5-8 s. It is found that in each zone, the diffusion coefficient varies linearly with the oxygen concentration, presenting a discontinuity in the transition of 8 s. This could be interpreted as an aerobic-to-anaerobic transition. We attribute this behavior to the coupling formalism between oxygen diffusion and biochemical reactions to produce adenosine triphosphate. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:14-21, 2020.
目的是估计角膜对角膜-泪液界面处氧张力的氧扩散系数和弛豫时间。讨论了这两个发现。Bonanno 等人提供的实验数据,通过数值计算使用 Monod-kinetic 模型获得了人体角膜-泪液-隐形眼镜(CL)的活体氧张力测量值、角膜弛豫时间及其氧扩散系数。考虑到角膜弛豫时间,我们的结果观察到不同的行为。在小于 8 s 的时间内,氧扩散过程是上扩散,而对于大于 8 s 的弛豫时间,氧扩散过程是下扩散。这两种情况都取决于角膜入口处的氧分压。角膜-泪液界面处的氧张力分布分为两个不同区域:一个是传统水凝胶,位于 6 至 75 mmHg 之间,弛豫时间在 8 至 19 s 之间;另一个是硅酮水凝胶 CLs 区域,位于高氧张力区,在 95 至 140 mmHg 之间,弛豫时间在 1.5-8 s 之间。结果发现,在每个区域,扩散系数与氧浓度呈线性变化,在 8 s 的转换处存在不连续性。这可以解释为需氧到厌氧的过渡。我们将这种行为归因于产生三磷酸腺苷的氧扩散和生化反应之间的偶联形式。2019 年 Wiley 期刊,生物医学材料研究杂志 B 部分:应用生物材料 108B:14-21, 2020.