Suppr超能文献

锥形束CT数据集用于剂量计算的可用性研究。

Investigation of the usability of conebeam CT data sets for dose calculation.

作者信息

Richter Anne, Hu Qiaoqiao, Steglich Doreen, Baier Kurt, Wilbert Jürgen, Guckenberger Matthias, Flentje Michael

机构信息

Julius-Maximilians-University, Department of Radiation Oncology, Wuerzburg, Germany.

出版信息

Radiat Oncol. 2008 Dec 16;3:42. doi: 10.1186/1748-717X-3-42.

Abstract

BACKGROUND

To investigate the feasibility and accuracy of dose calculation in cone beam CT (CBCT) data sets.

METHODS

Kilovoltage CBCT images were acquired with the Elekta XVI system, CT studies generated with a conventional multi-slice CT scanner (Siemens Somatom Sensation Open) served as reference images. Material specific volumes of interest (VOI) were defined for commercial CT Phantoms (CATPhan and Gammex RMI) and CT values were evaluated in CT and CBCT images. For CBCT imaging, the influence of image acquisition parameters such as tube voltage, with or without filter (F1 or F0) and collimation on the CT values was investigated. CBCT images of 33 patients (pelvis n = 11, thorax n = 11, head n = 11) were compared with corresponding planning CT studies. Dose distributions for three different treatment plans were calculated in CT and CBCT images and differences were evaluated. Four different correction strategies to match CT values (HU) and density (D) in CBCT images were analysed: standard CT HU-D table without adjustment for CBCT; phantom based HU-D tables; patient group based HU-D tables (pelvis, thorax, head); and patient specific HU-D tables.

RESULTS

CT values in the CBCT images of the CATPhan were highly variable depending on the image acquisition parameters: a mean difference of 564 HU +/- 377 HU was calculated between CT values determined from the planning CT and CBCT images. Hence, two protocols were selected for CBCT imaging in the further part of the study and HU-D tables were always specific for these protocols (pelvis and thorax with M20F1 filter, 120 kV; head S10F0 no filter, 100 kV). For dose calculation in real patient CBCT images, the largest differences between CT and CBCT were observed for the standard CT HU-D table: differences were 8.0% +/- 5.7%, 10.9% +/- 6.8% and 14.5% +/- 10.4% respectively for pelvis, thorax and head patients using clinical treatment plans. The use of patient and group based HU-D tables resulted in small dose differences between planning CT and CBCT: 0.9% +/- 0.9%, 1.8% +/- 1.6%, 1.5% +/- 2.5% for pelvis, thorax and head patients, respectively. The application of the phantom based HU-D table was acceptable for the head patients but larger deviations were determined for the pelvis and thorax patient populations.

CONCLUSION

The generation of three HU-D tables specific for the anatomical regions pelvis, thorax and head and specific for the corresponding CBCT image acquisition parameters resulted in accurate dose calculation in CBCT images. Once these HU-D tables are created, direct dose calculation on CBCT datasets is possible without the need of a reference CT images for pixel value calibration.

摘要

背景

探讨在锥形束CT(CBCT)数据集中进行剂量计算的可行性和准确性。

方法

使用Elekta XVI系统采集千伏级CBCT图像,以传统多层CT扫描仪(西门子Somatom Sensation Open)生成的CT研究作为参考图像。为商用CT体模(CATPhan和Gammex RMI)定义特定材料的感兴趣体积(VOI),并在CT和CBCT图像中评估CT值。对于CBCT成像,研究了诸如管电压、有无滤波器(F1或F0)以及准直等图像采集参数对CT值的影响。将33例患者(骨盆11例、胸部11例、头部11例)的CBCT图像与相应的计划CT研究进行比较。在CT和CBCT图像中计算三种不同治疗计划的剂量分布,并评估差异。分析了四种不同的校正策略以匹配CBCT图像中的CT值(HU)和密度(D):未针对CBCT进行调整的标准CT HU-D表;基于体模的HU-D表;基于患者组的HU-D表(骨盆、胸部、头部);以及基于患者个体的HU-D表。

结果

CATPhan的CBCT图像中的CT值根据图像采集参数变化很大:从计划CT和CBCT图像确定的CT值之间计算出的平均差异为564 HU±377 HU。因此,在研究的后续部分选择了两种协议进行CBCT成像,并且HU-D表始终针对这些协议(骨盆和胸部使用M20F1滤波器,120 kV;头部使用S10F0无滤波器,100 kV)。对于实际患者CBCT图像中的剂量计算,标准CT HU-D表在CT和CBCT之间观察到的差异最大:使用临床治疗计划时,骨盆、胸部和头部患者的差异分别为8.0%±5.7%、10.9%±6.8%和14.5%±10.4%。使用基于患者和组的HU-D表导致计划CT和CBCT之间的剂量差异较小:骨盆、胸部和头部患者分别为0.9%±0.9%、1.8%±1.6%、1.5%±2.5%。基于体模的HU-D表对头部患者的应用是可以接受的,但对于骨盆和胸部患者群体确定存在较大偏差。

结论

针对解剖区域骨盆、胸部和头部以及相应的CBCT图像采集参数生成的三个HU-D表,可在CBCT图像中进行准确的剂量计算。一旦创建了这些HU-D表,就可以在CBCT数据集上直接进行剂量计算,而无需参考CT图像进行像素值校准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8116/2648965/dbf37427556a/1748-717X-3-42-1.jpg

相似文献

1
Investigation of the usability of conebeam CT data sets for dose calculation.
Radiat Oncol. 2008 Dec 16;3:42. doi: 10.1186/1748-717X-3-42.
3
Accuracy of dose calculations on kV cone beam CT images of lung cancer patients.
Med Phys. 2016 Nov;43(11):5934. doi: 10.1118/1.4964455.
9
The impact of CBCT reconstruction and calibration for radiotherapy planning in the head and neck region - a phantom study.
Acta Oncol. 2014 Aug;53(8):1114-24. doi: 10.3109/0284186X.2014.927073. Epub 2014 Jun 30.

引用本文的文献

1
Effect of the Residual Errors on the Dose for Left-Sided Breast Cancer Radiotherapy After Translation Error Correction Based on CBCT.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251338489. doi: 10.1177/15330338251338489. Epub 2025 Jun 17.
3
[Methods for enhancing image quality of soft tissue regions in synthetic CT based on cone-beam CT].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Feb 25;42(1):113-122. doi: 10.7507/1001-5515.202407078.
6
A novel evaluation model of image registration for cone-beam computed tomography guided lung cancer radiotherapy.
Thorac Cancer. 2024 Jun;15(17):1333-1342. doi: 10.1111/1759-7714.15320. Epub 2024 Apr 30.
7
ACR benchmark testing of a novel high-speed ring-gantry linac kV-CBCT system.
J Appl Clin Med Phys. 2024 May;25(5):e14299. doi: 10.1002/acm2.14299. Epub 2024 Mar 22.
8
Evaluation of a cone-beam computed tomography system calibrated for accurate radiotherapy dose calculation.
Phys Imaging Radiat Oncol. 2024 Feb 29;29:100566. doi: 10.1016/j.phro.2024.100566. eCollection 2024 Jan.
9
Generating synthetic images from cone beam computed tomography using self-attention residual UNet for head and neck radiotherapy.
Phys Imaging Radiat Oncol. 2023 Nov 17;28:100512. doi: 10.1016/j.phro.2023.100512. eCollection 2023 Oct.

本文引用的文献

1
Shading correction algorithm for improvement of cone-beam CT images in radiotherapy.
Phys Med Biol. 2008 Oct 21;53(20):5719-33. doi: 10.1088/0031-9155/53/20/010. Epub 2008 Sep 26.
5
Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file.
Int J Radiat Oncol Biol Phys. 2008 Feb 1;70(2):634-44. doi: 10.1016/j.ijrobp.2007.09.054.
6
A (short) history of image-guided radiotherapy.
Radiother Oncol. 2008 Jan;86(1):4-13. doi: 10.1016/j.radonc.2007.11.023.
7
Innovations in image-guided radiotherapy.
Nat Rev Cancer. 2007 Dec;7(12):949-60. doi: 10.1038/nrc2288.
8
Correction of conebeam CT values using a planning CT for derivation of the "dose of the day".
Radiother Oncol. 2007 Nov;85(2):195-200. doi: 10.1016/j.radonc.2007.08.010. Epub 2007 Oct 23.
9
Nonrigid patient setup errors in the head-and-neck region.
Strahlenther Onkol. 2007 Sep;183(9):506-11. doi: 10.1007/s00066-007-1747-5.
10
Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image quality and system performance.
Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1229-37. doi: 10.1016/j.ijrobp.2006.09.058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验