Suppr超能文献

塞佩蒂巴湾锌矿残渣中重金属污染酸性水体的古菌和细菌群落

Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay.

作者信息

Almeida Welington I, Vieira Ricardo P, Cardoso Alexander Machado, Silveira Cynthia B, Costa Rebeca G, Gonzalez Alessandra M, Paranhos Rodolfo, Medeiros João A, Freitas Flávia A, Albano Rodolpho M, Martins Orlando B

机构信息

Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco D, subsolo, sala 5, Rio de Janeiro 21941-590, Brazil.

出版信息

Extremophiles. 2009 Mar;13(2):263-71. doi: 10.1007/s00792-008-0214-2. Epub 2008 Dec 17.

Abstract

Mining of metallic sulfide ore produces acidic water with high metal concentrations that have harmful consequences for aquatic life. To understand the composition and structure of microbial communities in acid mine drainage (AMD) waters associated with Zn mine tailings, molecular diversity of 16S genes was examined using a PCR, cloning, and sequencing approach. A total of 78 operational taxonomic units (OTUs) were obtained from samples collected at five different sites in and around mining residues in Sepetiba Bay, Brazil. We analyzed metal concentration, physical, chemical, and microbiological parameters related to prokaryotic diversity in low metal impacted compared to highly polluted environments with Zn at level of gram per liter and Cd-Pb at level of microgram per liter. Application of molecular methods for community structure analyses showed that Archaea and Bacteria groups present a phylogenetic relationship with uncultured environmental organisms. Phylogenetic analysis revealed that bacteria present at the five sites fell into seven known divisions, alpha-Proteobacteria (13.4%), beta-Proteobacteria (16.3%), gamma-Proteobacteria (4.3%), Sphingobacteriales (4.3%), Actinobacteria (3.2%) Acidobacteria (2.1%), Cyanobacteria (11.9%), and unclassified bacteria (44.5%). Almost all archaeal clones were related to uncultivated Crenarchaeota species, which were shared between high impacted and low impacted waters. Rarefaction curves showed that bacterial groups are more diverse than archaeal groups while the overall prokaryotic biodiversity is lower in high metal impacted environments than in less polluted habitats. Knowledge of this microbial community structure will help in understanding prokaryotic diversity, biogeography, and the role of microorganisms in zinc smelting AMD generation and perhaps it may be exploited for environmental remediation procedures in this area.

摘要

金属硫化矿的开采会产生酸性水,其中金属浓度很高,会对水生生物造成有害影响。为了解与锌矿尾矿相关的酸性矿山排水(AMD)水中微生物群落的组成和结构,采用聚合酶链反应(PCR)、克隆和测序方法对16S基因的分子多样性进行了检测。从巴西塞佩蒂巴湾采矿残渣内及周边五个不同地点采集的样本中,共获得了78个可操作分类单元(OTU)。我们分析了与原核生物多样性相关的金属浓度、物理、化学和微生物学参数,将低金属影响环境与锌含量为克/升、镉 - 铅含量为微克/升的高污染环境进行了比较。应用分子方法进行群落结构分析表明,古菌和细菌类群与未培养的环境生物存在系统发育关系。系统发育分析显示,五个地点的细菌分为七个已知门类,即α-变形菌纲(13.4%)、β-变形菌纲(16.3%)、γ-变形菌纲(4.3%)、鞘脂杆菌目(4.3%)、放线菌纲(3.2%)、酸杆菌门(2.1%)、蓝细菌(11.9%)以及未分类细菌(44.5%)。几乎所有古菌克隆都与未培养的泉古菌物种相关,这些物种在高影响水域和低影响水域中都有。稀疏曲线表明,细菌类群比古菌类群更多样化,而在高金属影响环境中,原核生物的总体生物多样性低于污染程度较低的栖息地。了解这种微生物群落结构将有助于理解原核生物多样性、生物地理学以及微生物在锌冶炼AMD生成中的作用,或许还可用于该领域的环境修复程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验